Skip to main content

Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro

  • Protocol
  • First Online:
Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1556))

Abstract

Motility and/or chemotaxis of satellite cells has been suggested or observed in multiple in vitro and in vivo contexts. Satellite cell motility also affects the efficiency of muscle regeneration, particularly in the context of engrafted exogenous cells. Consequently, there is keen interest in determining what cell-autonomous and environmental factors influence satellite cell motility and chemotaxis in vitro and in vivo. In addition, the ability of activated satellite cells to relocate in vivo would suggest that they must be able to invade and transit through the extracellular matrix (ECM), which is supported by studies in which alteration or addition of matrix metalloprotease (MMP) activity enhanced the spread of engrafted satellite cells. However, despite its potential importance, analysis of satellite cell motility or invasion quantitatively even in an in vitro setting can be difficult; one of the most powerful techniques for overcoming these difficulties is timelapse microscopy. Identification and longitudinal evaluation of individual cells over time permits not only quantification of variations in motility due to intrinsic or extrinsic factors, it permits observation and analysis of other (frequently unsuspected) cellular activities as well. We describe here three protocols developed in our group for quantitatively analyzing satellite cell motility over time in two dimensions on purified ECM substrates, in three dimensions on a living myofiber, and in three dimensions through an artificial matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 20 March 2018

    Correction to: Eusebio Perdiguero and DDW Cornelison (eds.), Muscle Stem Cells: Methods and Protocols, Methods in Molecular Biology, vol. 1556, https://doi.org/10.1007/978-1-4939-6771-1

References

  1. Campion DR (1984) The muscle satellite cell: a review. Int Rev Cytol 87:225–251

    Article  CAS  PubMed  Google Scholar 

  2. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    Article  CAS  PubMed  Google Scholar 

  3. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708

    Article  CAS  PubMed  Google Scholar 

  4. Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877

    Article  CAS  PubMed  Google Scholar 

  5. Schmalbruch H (1978) Satellite cells of rat muscles as studied by freeze-fracturing. Anat Rec 191:371–376

    Article  CAS  PubMed  Google Scholar 

  6. Morgan JE, Coulton GR, Partridge TA (1987) Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 8:386–396

    Article  CAS  PubMed  Google Scholar 

  7. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chretien F (2016) Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. PLoS One 11:e0147198

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schultz E, Jaryszak DL, Gibson MC, Albright DJ (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Muscle Res Cell Motil 7:361–367

    Article  CAS  PubMed  Google Scholar 

  9. Phillips GD, Hoffman JR, Knighton DR (1990) Migration of myogenic cells in the rat extensor digitorum longus muscle studied with a split autograft model. Cell Tissue Res 262:81–88

    Article  CAS  PubMed  Google Scholar 

  10. Hughes SM, Blau HM (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345:350–353

    Article  CAS  PubMed  Google Scholar 

  11. McCormick KM, Schultz E (1992) Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy. Dev Biol 150:319–334

    Article  CAS  Google Scholar 

  12. Ishido M, Kasuga N (2011) In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. Histochem Cell Biol 135:21–26

    Article  CAS  PubMed  Google Scholar 

  13. Chazaud B, Christov C, Gherardi RK, Barlovatz-Meimon G (1998) In vitro evaluation of human muscle satellite cell migration prior to fusion into myotubes. J Muscle Res Cell Motil 19:931–936

    Article  CAS  PubMed  Google Scholar 

  14. Villena J, Brandan E (2004) Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration. J Cell Physiol 198:169–178

    Article  CAS  PubMed  Google Scholar 

  15. Bondesen BA, Jones KA, Glasgow WC, Pavlath GK (2007) Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J 21:3338–3345

    Article  CAS  PubMed  Google Scholar 

  16. Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DDW (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    Article  CAS  PubMed  Google Scholar 

  17. Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208:505–515

    Article  CAS  PubMed  Google Scholar 

  18. Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Griffin CA, Kafadar KA, Pavlath GK (2009) MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 17:649–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stark DA, Karvas RM, Siegel AL, Cornelison DDW (2011) Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138:5279–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lund DK, Cornelison DD (2013) Enter the matrix: shape, signal and superhighway. FEBS J:4089–4099

    Google Scholar 

  22. Deryugina EI, Bourdon MA, Reisfeld RA, Strongin A (1998) Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer Res 58:3743–3750

    CAS  PubMed  Google Scholar 

  23. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allen DL, Teitelbaum DH, Kurachi K (2003) Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol 284:C805–C815

    Article  CAS  PubMed  Google Scholar 

  25. Lund DK, Mouly V, Cornelison DDW (2014) MMP-14 is necessary but not sufficient for invasion of three-dimensional collagen by human muscle satellite cells. Am J Physiol Cell Physiol 307:140–149

    Article  Google Scholar 

  26. Dehmel T, Janke A, Hartung HP, Goebel HH, Wiendl H, Kieseier BC (2007) The cell-specific expression of metalloproteinase-disintegrins (ADAMs) in inflammatory myopathies. Neurobiol Dis 25:665–674

    Article  CAS  PubMed  Google Scholar 

  27. Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S, Ikeda S (2007) Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 8:54

    Article  PubMed  PubMed Central  Google Scholar 

  28. Torrente Y, El Fahime E, Caron NJ, Bresolin N, Tremblay JP (2000) Intramuscular migration of myoblasts transplanted after muscle pretreatment with metalloproteinases. Cell Transplant 9:539–549

    Article  PubMed  Google Scholar 

  29. Brzoska E, Kowalewska M, Markowska-Zagrajek A, Kowalski K, Archacka K, Zimowska M, Grabowska I, Czerwinska AM, Czarnecka-Gora M, Streminska W, Janczyk-Ilach K, Ciemerych MA (2012) Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell 104:722–737

    Article  CAS  PubMed  Google Scholar 

  30. Zimowska M, Olszynski KH, Swierczynska M, Streminska W, Ciemerych MA (2012) Decrease of MMP-9 activity improves soleus muscle regeneration. Tissue Eng Part A 18:1183–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hindi SM, Shin J, Ogura Y, Li H, Kumar A (2013) Matrix Metalloproteinase-9 Inhibition Improves Proliferation and Engraftment of Myogenic Cells in Dystrophic Muscle of mdx Mice. PLoS One 8:e72121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Capkovic KL, Stevenson S, Johnson MC, Thelen JJ, Cornelison DDW (2008) Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp Cell Res 314:1553–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chowdhury AS, Paul A, Bunyak F, Cornelison DDW, Palaniappan K (2012) Semi-automated tracking of muscle satellite cells in brightfield microscopy video, Proceedings – International Conference on Image Processing, ICIP. pp 2825–2828.

    Google Scholar 

  34. Al-Shanti N, Faulkner SH, Saini A, Loram I, Stewart CE (2011) A semi-automated programme for tracking myoblast migration following mechanical damage: manipulation by chemical inhibitors. Cell Physiol Biochem 27:625–636

    Article  CAS  PubMed  Google Scholar 

  35. Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, Di Santo JP, Butler-Browne GS, Wright WE (2007) Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6:515–523

    Article  CAS  PubMed  Google Scholar 

  36. Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, Wolff A, Kandalla PK, Marie S, Di Santo J, St Guily JL, Muntoni F, Kim J, Philippi S, Spuler S, Levy N, Blumen SC, Voit T, Wright WE, Aamiri A, Butler-Browne G, Mouly V (2011) Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle 1:34

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DDW Cornelison .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

A single-plane timelapse recording through a collagen I matrix showing invasion of human satellite cells over 24 h (M4V 5732 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lund, D.K., McAnulty, P., Siegel, A.L., Cornelison, D. (2017). Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro. In: Perdiguero, E., Cornelison, D. (eds) Muscle Stem Cells. Methods in Molecular Biology, vol 1556. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6771-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6771-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-6769-8

  • Online ISBN: 978-1-4939-6771-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics