Skip to main content

Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP)

  • Protocol
  • First Online:
Protein Terminal Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1574))

Abstract

The PROtein TOpography and Migration Analysis Platform (PROTOMAP) approach is a degradomics technique used to determine protease substrates within complex protein backgrounds. The method involves protein separation according to protein relative mobility, using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Gel lanes are then sliced into horizontal sections, and in-gel trypsin digestion performed for each gel slice. Extracted peptides and corresponding proteins are identified using liquid chromatography-tandem mass spectrometry and bioinformatics. Results are compiled in silico to generate a peptograph for every identified protein, being a pictorial representation of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins shown by their peptograph to have migrated further through the gel (i.e., to a lower gel slice) in the lane containing the active protease(s) of interest, as compared to the control, are deemed putative protease substrates. PROTOMAP has broad applicability to a range of experimental conditions and protein pools. Coupling this with its simple and robust methodology, the PROTOMAP approach has emerged as a valuable tool with which to determine protease substrates in complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134(4):679–691. doi:10.1016/j.cell.2008.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prakash MD, Munoz MA, Jain R, Tong PL, Koskinen A, Regner M, Kleifeld O, Ho B, Olson M, Turner SJ, Mrass P, Weninger W, Bird PI (2014) Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 41(6):960–972. doi:10.1016/j.immuni.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  3. Lomenick B (2013) Small molecule target identification using Drug Affinity Responsive Target Stability (DARTS). Dissertation, University of California, California

    Google Scholar 

  4. Niessen S, Hoover H, Gale AJ (2011) Proteomic analysis of the coagulation reaction in plasma and whole blood using PROTOMAP. Proteomics 11(12):2377–2388. doi:10.1002/pmic.201000674

    Article  CAS  PubMed  Google Scholar 

  5. Bowyer PW, Simon GM, Cravatt BF, Bogyo M (2011) Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte. Mol Cell Proteomics 10(5):M110.001636. doi:10.1074/mcp.M110.001636

    Article  PubMed  Google Scholar 

  6. Shen C, Yu Y, Li H, Yan G, Liu M, Shen H, Yang P (2012) Global profiling of proteolytically modified proteins in human metastatic hepatocellular carcinoma cell lines reveals CAPN2 centered network. Proteomics 12(12):1917–1927. doi:10.1002/pmic.201200027

    Article  CAS  PubMed  Google Scholar 

  7. Dix MM, Simon GM, Wang C, Okerberg E, Patricelli MP, Cravatt BF (2012) Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome. Cell 150(2):426–440. doi:10.1016/j.cell.2012.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taoka M, Morofuji N, Yamauchi Y, Ojima H, Kubota D, Terukina G, Nobe Y, Nakayama H, Takahashi N, Kosuge T, Isobe T, Kondo T (2014) Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma. J Proteome Res 13(11):4847–4858. doi:10.1021/pr500262p

    Article  CAS  PubMed  Google Scholar 

  9. Eckhard U, Marino G, Butler GS, Overall CM (2016) Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie 122:110–118. doi:10.1016/j.biochi.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  10. Vizovisek M, Vidmar R, Fonovic M, Turk B (2016) Current trends and challenges in proteomic identification of protease substrates. Biochimie 122:77–87. doi:10.1016/j.biochi.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  11. Bekes M, Prudden J, Srikumar T, Raught B, Boddy MN, Salvesen GS (2011) The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J Biol Chem 286(12):10238–10247. doi:10.1074/jbc.M110.205153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lo WS, Gardiner E, Xu Z, Lau CF, Wang F, Zhou JJ, Mendlein JD, Nangle LA, Chiang KP, Yang XL, Au KF, Wong WH, Guo M, Zhang M, Schimmel P (2014) Human tRNA synthetase catalytic nulls with diverse functions. Science 345(6194):328–332. doi:10.1126/science.1252943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  14. Bio-Rad Laboratories Inc. A guide to polyacrylamide gel electrophoresis and detection. United State of America, Bulletin 6040 Rev B Electrophoresis Guide. http:www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6040.pdf

  15. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989. doi:10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  16. Tabb DL, McDonald WH, Yates JR III (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1(1):21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920. doi:10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B, Eng JK, Martin DB, Nesvizhskii AI, Aebersold R (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10(6):1150–1159. doi:10.1002/pmic.200900375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Global Proteome Machine Organization T (2012) The common repository of adventitious proteins. ftp://ftp.thegpm.org/fasta/cRAP. 2013

  20. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  21. Havlis J, Thomas H, Sebela M, Shevchenko A (2003) Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75(6):1300–1306

    Article  CAS  PubMed  Google Scholar 

  22. Speicher KD, Kolbas O, Harper S, Speicher DW (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 11(2):74–86

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao Z, Tang HY, Wang H, Liu Q, Speicher DW (2012) Systematic comparison of fractionation methods for in-depth analysis of plasma proteomes. J Proteome Res 11(6):3090–3100. doi:10.1021/pr201068b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Clements .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fuhrman-Luck, R.A., Silva, L.M., Hastie, M.L., Gorman, J.J., Clements, J.A. (2017). Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP). In: Schilling, O. (eds) Protein Terminal Profiling. Methods in Molecular Biology, vol 1574. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6850-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6850-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6849-7

  • Online ISBN: 978-1-4939-6850-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics