Skip to main content

Th9 Cells: New Member of T Helper Cell Family

  • Protocol
  • First Online:
Th9 Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

T Helper cells (CD4+ T cells) constitute one of the key arms of adaptive immune responses. Differentiation of naïve CD4+ T cells into multiple subsets ensure a proper protection against multitude of pathogens in immunosufficient individual. After differentiation, T helper cells secrete specific cytokines that are critical to provide immunity against various pathogens. The recently discovered Th9 cells secrete the pleiotropic cytokine, IL-9. Although IL-9 was cloned more than 25 years ago and characterized as a Th2 cell-specific cytokine, not many studies were carried out to define the function of IL-9. This cytokine has been demonstrated to act on multiple cell types as a growth factor. After the discovery of Th9 cells as an abundant source of IL-9, renewed focus has been generated. In this chapter, I discuss the biology and development of IL-9-secreting Th9 cells. Furthermore, I highlight the role of Th9 cells and IL-9 in health and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kuhn R, Muller W, Palm N, Rude E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996

    CAS  PubMed  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    CAS  PubMed  Google Scholar 

  3. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  4. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol (12):1347–1355. doi:10.1038/ni.1677

  5. Wong MT, Ye JJ, Alonso MN, Landrigan A, Cheung RK, Engleman E, Utz PJ (2010) Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol 88(6):624–631. doi:10.1038/icb.2010.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C (2010) Regulation of IL-9 expression by IL-25 signaling. Nat Immunol 11(3):250–256. doi:10.1038/ni.1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15(5):295–307. doi:10.1038/nri3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Snick J, Goethals A, Renauld JC, Van Roost E, Uyttenhove C, Rubira MR, Moritz RL, Simpson RJ (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169(1):363–368

    Article  CAS  PubMed  Google Scholar 

  9. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A 85(18):6934–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang YC, Ricciardi S, Ciarletta A, Calvetti J, Kelleher K, Clark SC (1989) Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74(6):1880–1884

    CAS  PubMed  Google Scholar 

  11. Mock BA, Krall M, Kozak CA, Nesbitt MN, McBride OW, Renauld JC, Van Snick J (1990) IL9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics 31(4):265–270

    Article  CAS  PubMed  Google Scholar 

  12. Schmitt E, Van Brandwijk R, Van Snick J, Siebold B, Rude E (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19(11):2167–2170. doi:10.1002/eji.1830191130

    Article  CAS  PubMed  Google Scholar 

  13. Renauld JC, Druez C, Kermouni A, Houssiau F, Uyttenhove C, Van Roost E, Van Snick J (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc Natl Acad Sci U S A 89(12):5690–5694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauer JH, Liu KD, You Y, Lai SY, Goldsmith MA (1998) Heteromerization of the gammac chain with the interleukin-9 receptor alpha subunit leads to STAT activation and prevention of apoptosis. J Biol Chem 273(15):9255–9260

    Article  CAS  PubMed  Google Scholar 

  15. Demoulin JB, Uyttenhove C, Van Roost E, DeLestre B, Donckers D, Van Snick J, Renauld JC (1996) A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 16(9):4710–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Demoulin JB, Louahed J, Dumoutier L, Stevens M, Renauld JC (2003) MAP kinase activation by interleukin-9 in lymphoid and mast cell lines. Oncogene 22(12):1763–1770. doi:10.1038/sj.onc.1206253

    Article  CAS  PubMed  Google Scholar 

  17. Cosmi L, Liotta F, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Lasagni L, Vanini V, Romagnani P, Maggi E, Annunziato F, Romagnani S (2004) Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood 103(8):3117–3121. doi:10.1182/blood-2003-09-3302

    Article  CAS  PubMed  Google Scholar 

  18. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206(8):1653–1660. doi:10.1084/jem.20090246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goswami R, Kaplan MH (2011) A brief history of IL-9. J Immunol 186(6):3283–3288. doi:10.4049/jimmunol.1003049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsuzawa S, Sakashita K, Kinoshita T, Ito S, Yamashita T, Koike K (2003) IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor. J Immunol 170(7):3461–3467

    Article  CAS  PubMed  Google Scholar 

  21. Holbrook ST, Ohls RK, Schibler KR, Yang YC, Christensen RD (1991) Effect of interleukin-9 on clonogenic maturation and cell-cycle status of fetal and adult hematopoietic progenitors. Blood 77(10):2129–2134

    CAS  PubMed  Google Scholar 

  22. Gounni AS, Hamid Q, Rahman SM, Hoeck J, Yang J, Shan L (2004) IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells. J Immunol 173(4):2771–2779

    Article  CAS  PubMed  Google Scholar 

  23. Temann UA, Geba GP, Rankin JA, Flavell RA (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188(7):1307–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y (2011) Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 11(4):239–250. doi:10.1038/nri2958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Oestreich KJ, Weinmann AS (2012) Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat Rev Immunol 12(11):799–804. doi:10.1038/nri3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones CP, Gregory LG, Causton B, Campbell GA, Lloyd CM (2012) Activin A and TGF-beta promote T(H)9 cell-mediated pulmonary allergic pathology. J Allergy Clin Immunol 129(4):1000–1010 . doi:10.1016/j.jaci.2011.12.965e1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, Klemsz MJ, Kaplan MH (2005) PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity 22(6):693–703. doi:10.1016/j.immuni.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  28. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goswami R, Jabeen R, Yagi R, Pham D, Zhu J, Goenka S, Kaplan MH (2012) STAT6-dependent regulation of Th9 development. J Immunol 188(3):968–975. doi:10.4049/jimmunol.1102840

    Article  CAS  PubMed  Google Scholar 

  30. Koh B, Hufford MM, Pham D, Olson MR, Wu T, Jabeen R, Sun X, Kaplan MH (2016) The ETS Family Transcription Factors Etv5 and PU.1 Function in Parallel To Promote Th9 Cell Development. J Immunol 197(6):2465–2472

    Google Scholar 

  31. Lu L, Wang J, Zhang F, Chai Y, Brand D, Wang X, Horwitz DA, Shi W, Zheng SG (2010) Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol 184(8):4295–4306. doi:10.4049/jimmunol.0903418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang A, Pan D, Lee YH, Martinez GJ, Feng XH, Dong C (2013) Cutting edge: Smad2 and Smad4 regulate TGF-beta-mediated Il9 gene expression via EZH2 displacement. J Immunol 191(10):4908–4912. doi:10.4049/jimmunol.1300433

    Article  CAS  PubMed  Google Scholar 

  33. Tamiya T, Ichiyama K, Kotani H, Fukaya T, Sekiya T, Shichita T, Honma K, Yui K, Matsuyama T, Nakao T, Fukuyama S, Inoue H, Nomura M, Yoshimura A (2013) Smad2/3 and IRF4 play a cooperative role in IL-9-producing T cell induction. J Immunol 191(5):2360–2371. doi:10.4049/jimmunol.1301276

    Article  CAS  PubMed  Google Scholar 

  34. Elyaman W, Bassil R, Bradshaw EM, Orent W, Lahoud Y, Zhu B, Radtke F, Yagita H, Khoury SJ (2012) Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36(4):623–634. doi:10.1016/j.immuni.2012.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202. doi:10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  36. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123(11):4641–4653. doi:10.1172/JCI69489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gomez-Rodriguez J, Meylan F, Handon R, Hayes ET, Anderson SM, Kirby MR, Siegel RM, Schwartzberg PL (2016) Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun 7:10857. doi:10.1038/ncomms10857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schraml BU, Hildner K, Ise W, Lee WL, Smith WA, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460(7253):405–409. doi:10.1038/nature08114

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC (2012) OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 13(10):981–990. doi:10.1038/ni.2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hermann-Kleiter N, Baier G (2010) NFAT pulls the strings during CD4+ T helper cell effector functions. Blood 115(15):2989–2997. doi:10.1182/blood-2009-10-233585

    Article  CAS  PubMed  Google Scholar 

  41. Jash A, Sahoo A, Kim GC, Chae CS, Hwang JS, Kim JE, Im SH (2012) Nuclear factor of activated T cells 1 (NFAT1)-induced permissive chromatin modification facilitates nuclear factor-kappaB (NF-kappaB)-mediated interleukin-9 (IL-9) transactivation. J Biol Chem 287(19):15445–15457. doi:10.1074/jbc.M112.340356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim IK, Kim BS, Koh CH, Seok JW, Park JS, Shin KS, Bae EA, Lee GE, Jeon H, Cho J, Jung Y, Han D, Kwon BS, Lee HY, Chung Y, Kang CY (2015) Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 21(9):1010–1017. doi:10.1038/nm.3922

    Article  CAS  PubMed  Google Scholar 

  43. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, Deng L, Zanvit P, Tu E, Jin W, Abbatiello B, Goldberg N, Chen Q, Sun L, Zhao K, Chen W (2015) The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol 16(10):1077–1084. doi:10.1038/ni.3252

    Article  CAS  PubMed  Google Scholar 

  44. Olson MR, Verdan FF, Hufford MM, Dent AL, Kaplan MH (2016) STAT3 impairs STAT5 activation in the development of IL-9-secreting T cells. J Immunol. doi:10.4049/jimmunol.1501801

    PubMed Central  Google Scholar 

  45. Liao W, Spolski R, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A 111(9):3508–3513. doi:10.1073/pnas.1301138111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bassil R, Orent W, Olah M, Kurdi AT, Frangieh M, Buttrick T, Khoury SJ, Elyaman W (2014) BCL6 controls Th9 cell development by repressing Il9 transcription. J Immunol 193(1):198–207. doi:10.4049/jimmunol.1303184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao W, Zhang Y, Jabeen R, Nguyen ET, Wilkes DS, Tepper RS, Kaplan MH, Zhou B (2013) Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38(2):360–372. doi:10.1016/j.immuni.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Richard AC, Tan C, Hawley ET, Gomez-Rodriguez J, Goswami R, Yang XP, Cruz AC, Penumetcha P, Hayes ET, Pelletier M, Gabay O, Walsh M, Ferdinand JR, Keane-Myers A, Choi Y, O'Shea JJ, Al-Shamkhani A, Kaplan MH, Gery I, Siegel RM, Meylan F (2015) The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells. J Immunol 194(8):3567–3582. doi:10.4049/jimmunol.1401220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (2003) Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21:713–758. doi:10.1146/annurev.immunol.21.120601.140942

    Article  CAS  PubMed  Google Scholar 

  50. Schreiber S, Rosenstiel P, Hampe J, Nikolaus S, Groessner B, Schottelius A, Kuhbacher T, Hamling J, Folsch UR, Seegert D (2002) Activation of signal transducer and activator of transcription (STAT) 1 in human chronic inflammatory bowel disease. Gut 51(3):379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khodarev NN, Roizman B, Weichselbaum RR (2012) Molecular pathways: interferon/stat1 pathway: role in the tumor resistance to genotoxic stress and aggressive growth. Clin Cancer Res 18(11):3015–3021. doi:10.1158/1078-0432.CCR-11-3225

    Article  CAS  PubMed  Google Scholar 

  52. Ubel C, Graser A, Koch S, Rieker RJ, Lehr HA, Muller M, Finotto S (2014) Role of Tyk-2 in Th9 and Th17 cells in allergic asthma. Sci Rep 4:5865. doi:10.1038/srep05865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Murugaiyan G, Beynon V, Pires Da Cunha A, Joller N, Weiner HL (2012) IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27. J Immunol 189(11):5277–5283. doi:10.4049/jimmunol.1200808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vegran F, Berger H, Boidot R, Mignot G, Bruchard M, Dosset M, Chalmin F, Rebe C, Derangere V, Ryffel B, Kato M, Prevost-Blondel A, Ghiringhelli F, Apetoh L (2014) The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol 15(8):758–766. doi:10.1038/ni.2925

    Article  CAS  PubMed  Google Scholar 

  55. Wilson CB, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9(2):91–105. doi:10.1038/nri2487

    Article  CAS  PubMed  Google Scholar 

  56. Perumal NB, Kaplan MH (2011) Regulating Il9 transcription in T helper cells. Trends Immunol 32(4):146–150. doi:10.1016/j.it.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goswami R, Kaplan MH (2012) Gcn5 is required for PU.1-dependent IL-9 induction in Th9 cells. J Immunol 189(6):3026–3033. doi:10.4049/jimmunol.1201496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramming A, Druzd D, Leipe J, Schulze-Koops H, Skapenko A (2012) Maturation-related histone modifications in the PU.1 promoter regulate Th9-cell development. Blood 119(20):4665–4674. doi:10.1182/blood-2011-11-392589

    Article  CAS  PubMed  Google Scholar 

  59. Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, Jetten AM, Khoury SJ, Fuhlbrigge RC, Kuchroo VK, Clark RA, Kupper TS (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18(8):1248–1253. doi:10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang XR, Pfeiffer RM, Wheeler W, Yeager M, Chanock S, Tucker MA, Goldstein AM (2009) Identification of modifier genes for cutaneous malignant melanoma in melanoma-prone families with and without CDKN2A mutations. Int J Cancer 125(12):2912–2917. doi:10.1002/ijc.24622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu Y, Hong S, Li H, Park J, Hong B, Wang L, Zheng Y, Liu Z, Xu J, He J, Yang J, Qian J, Yi Q (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Invest 122(11):4160–4171. doi:10.1172/JCI65459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bu XN, Zhou Q, Zhang JC, Ye ZJ, Tong ZH, Shi HZ (2013) Recruitment and phenotypic characteristics of interleukin 9-producing CD4+ T cells in malignant pleural effusion. Lung 191(4):385–389. doi:10.1007/s00408-013-9474-4

    Article  CAS  PubMed  Google Scholar 

  63. Lu Y, Hong B, Li H, Zheng Y, Zhang M, Wang S, Qian J, Yi Q (2014) Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci U S A 111(6):2265–2270. doi:10.1073/pnas.1317431111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park J, Li H, Zhang M, Lu Y, Hong B, Zheng Y, He J, Yang J, Qian J, Yi Q (2014) Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy. Cancer Immunol Immunother 63(8):835–845. doi:10.1007/s00262-014-1557-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fang Y, Chen X, Bai Q, Qin C, Mohamud AO, Zhu Z, Ball TW, Ruth CM, Newcomer DR, Herrick EJ, Nicholl MB (2015) IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol 111(8):969–974. doi:10.1002/jso.23930

    Article  CAS  PubMed  Google Scholar 

  66. Liu JQ, Li XY, Yu HQ, Yang G, Liu ZQ, Geng XR, Wang S, Mo LH, Zeng L, Zhao M, Fu YT, Sun HZ, Liu ZG, Yang PC (2015) Tumor-specific Th2 responses inhibit growth of CT26 colon-cancer cells in mice via converting intratumor regulatory T cells to Th9 cells. Sci Rep 5:10665. doi:10.1038/srep10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, Minze L, Fu YX, Ghobrial RM, Liu W, Li XC (2015) GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun 6:8266. doi:10.1038/ncomms9266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ye ZJ, Zhou Q, Yin W, Yuan ML, Yang WB, Xiong XZ, Zhang JC, Shi HZ (2012) Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med 186(11):1168–1179. doi:10.1164/rccm.201207-1307OC

    Article  CAS  PubMed  Google Scholar 

  69. Merz H, Houssiau FA, Orscheschek K, Renauld JC, Fliedner A, Herin M, Noel H, Kadin M, Mueller-Hermelink HK, Van Snick J et al (1991) Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood 78(5):1311–1317

    CAS  PubMed  Google Scholar 

  70. Chen N, Lu K, Li P, Lv X, Wang X (2014) Overexpression of IL-9 induced by STAT6 activation promotes the pathogenesis of chronic lymphocytic leukemia. Int J Clin Exp Pathol 7(5):2319–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan H, Wang S, Zhao L (2016) A tumor-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol Oct 31. doi:10.1111/1440 1681.12689

  72. Lange K, Uckert W, Blankenstein T, Nadrowitz R, Bittner C, Renauld JC, van Snick J, Feller AC, Merz H (2003) Overexpression of NPM-ALK induces different types of malignant lymphomas in IL-9 transgenic mice. Oncogene 22(4):517–527. doi:10.1038/sj.onc.1206076

    Article  CAS  PubMed  Google Scholar 

  73. Anuradha R, George PJ, Hanna LE, Chandrasekaran V, Kumaran P, Nutman TB, Babu S (2013) IL-4-, TGF-beta-, and IL-1-dependent expansion of parasite antigen-specific Th9 cells is associated with clinical pathology in human lymphatic filariasis. J Immunol 191(5):2466–2473. doi:10.4049/jimmunol.1300911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I, Ishigame H, Hao L, Herbert DR, Flavell RA (2013) Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection. Immunity 39(4):744–757. doi:10.1016/j.immuni.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  75. Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210(13):2951–2965. doi:10.1084/jem.20130071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12(11):1071–1077. doi:10.1038/ni.2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khan WI, Richard M, Akiho H, Blennerhasset PA, Humphreys NE, Grencis RK, Van Snick J, Collins SM (2003) Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections. Infect Immun 71(5):2430–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Richard M, Grencis RK, Humphreys NE, Renauld JC, Van Snick J (2000) Anti-IL-9 vaccination prevents worm expulsion and blood eosinophilia in Trichuris muris-infected mice. Proc Natl Acad Sci U S A 97(2):767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faulkner H, Renauld JC, Van Snick J, Grencis RK (1998) Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect Immun 66(8):3832–3840

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Angkasekwinai P, Srimanote P, Wang YH, Pootong A, Sakolvaree Y, Pattanapanyasat K, Chaicumpa W, Chaiyaroj S, Dong C (2013) Interleukin-25 (IL-25) promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigen-specific IL-9 response. Infect Immun 81(10):3731–3741. doi:10.1128/IAI.00646-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Faulkner H, Humphreys N, Renauld JC, Van Snick J, Grencis R (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27(10):2536–2540. doi:10.1002/eji.1830271011

    Article  CAS  PubMed  Google Scholar 

  82. Anuradha R, Munisankar S, Bhootra Y, Jagannathan J, Dolla C, Kumaran P, Nutman TB, Babu S (2016) IL-10- and TGFbeta-mediated Th9 Responses in a Human Helminth Infection. PLoS Negl Trop Dis 10(1):e0004317. doi:10.1371/journal.pntd.0004317

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. doi:10.1038/nm1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ding X, Cao F, Cui L, Ciric B, Zhang GX, Rostami A (2015) IL-9 signaling affects central nervous system resident cells during inflammatory stimuli. Exp Mol Pathol 99(3):570–574. doi:10.1016/j.yexmp.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  85. Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177. doi:10.4049/jimmunol.0901906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kara EE, Comerford I, Bastow CR, Fenix KA, Litchfield W, Handel TM, McColl SR (2013) Distinct chemokine receptor axes regulate Th9 cell trafficking to allergic and autoimmune inflammatory sites. J Immunol 191(3):1110–1117. doi:10.4049/jimmunol.1203089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106(31):12885–12890. doi:10.1073/pnas.0812530106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1756–1767. doi:10.1053/j.gastro.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr HA, Wirtz S, Vieth M, Waisman A, Rosenbauer F, McKenzie AN, Weigmann B, Neurath MF (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15(7):676–686. doi:10.1038/ni.2920

    Article  CAS  PubMed  Google Scholar 

  90. Mudter J, Yu J, Zufferey C, Brustle A, Wirtz S, Weigmann B, Hoffman A, Schenk M, Galle PR, Lehr HA, Mueller C, Lohoff M, Neurath MF (2011) IRF4 regulates IL-17A promoter activity and controls RORgammat-dependent Th17 colitis in vivo. Inflamm Bowel Dis 17(6):1343–1358. doi:10.1002/ibd.21476

    Article  PubMed  Google Scholar 

  91. Ciccia F, Guggino G, Ferrante A, Raimondo S, Bignone R, Rodolico V, Peralta S, Van Tok M, Cannizzaro A, Schinocca C, Ruscitti P, Cipriani P, Giacomelli R, Alessandro R, Dieli F, Rizzo A, Baeten D, Triolo G (2016) IL-9 over-expression and Th9 polarization characterize the inflamed gut, the synovial tissue and the peripheral blood of patients with psoriatic arthritis. Arthritis Rheumatol. doi:10.1002/art.39649

    PubMed  Google Scholar 

  92. Mudter J, Amoussina L, Schenk M, Yu J, Brustle A, Weigmann B, Atreya R, Wirtz S, Becker C, Hoffman A, Atreya I, Biesterfeld S, Galle PR, Lehr HA, Rose-John S, Mueller C, Lohoff M, Neurath MF (2008) The transcription factor IFN regulatory factor-4 controls experimental colitis in mice via T cell-derived IL-6. J Clin Invest 118(7):2415–2426. doi:10.1172/JCI33227

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gerlach K, McKenzie AN, Neurath MF, Weigmann B (2015) IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis. Tissue Barriers 3(1–2):e983777. doi:10.4161/21688370.2014.983777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT, Atreya R, Krauss E, Hundorfean G, Fichtner-Feigl S, Hartmann A, Becker C, Mudter J (2015) IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64(5):743–755. doi:10.1136/gutjnl-2013-305947

    Article  CAS  PubMed  Google Scholar 

  95. Forbes EE, Groschwitz K, Abonia JP, Brandt EB, Cohen E, Blanchard C, Ahrens R, Seidu L, McKenzie A, Strait R, Finkelman FD, Foster PS, Matthaei KI, Rothenberg ME, Hogan SP (2008) IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 205(4):897–913. doi:10.1084/jem.20071046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yuan A, Yang H, Qi H, Cui J, Hua W, Li C, Pang Z, Zheng W, Cui G (2015) IL-9 antibody injection suppresses the inflammation in colitis mice. Biochem Biophys Res Commun 468(4):921–926. doi:10.1016/j.bbrc.2015.11.057

    Article  CAS  PubMed  Google Scholar 

  97. Kim HS, Chung DH (2013) IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal Immunol 6(2):347–357. doi:10.1038/mi.2012.77

    Article  CAS  PubMed  Google Scholar 

  98. Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, Bhan A, Autschbach F, Sullivan BM, Szabo SJ, Glimcher LH, Blumberg RS (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med 195(9):1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3). doi:10.4172/2155-9899.1000110

  100. Barnes PJ (2001) Th2 cytokines and asthma: an introduction. Respir Res 2(2):64–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brough HA, Cousins DJ, Munteanu A, Wong YF, Sudra A, Makinson K, Stephens AC, Arno M, Ciortuz L, Lack G, Turcanu V (2014) IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J Allergy Clin Immunol 134(6):1329–1338 . doi:10.1016/j.jaci.2014.06.032e1310

    Article  CAS  PubMed  Google Scholar 

  102. Froidure A, Shen C, Gras D, Van Snick J, Chanez P, Pilette C (2014) Myeloid dendritic cells are primed in allergic asthma for thymic stromal lymphopoietin-mediated induction of Th2 and Th9 responses. Allergy 69(8):1068–1076. doi:10.1111/all.12435

    Article  CAS  PubMed  Google Scholar 

  103. Hoppenot D, Malakauskas K, Lavinskiene S, Sakalauskas R (2015) p-STAT6, PU.1, and NF-kappaB are involved in allergen-induced late-phase airway inflammation in asthma patients. BMC Pulm Med 15:122. doi:10.1186/s12890-015-0119-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E, Teague JE, Campbell L, Yawalkar N, Kupper TS, Clark RA (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6(219):219218. doi:10.1126/scitranslmed.3007828

    Article  CAS  Google Scholar 

  105. Yao W, Tepper RS, Kaplan MH (2011) Predisposition to the development of IL-9-secreting T cells in atopic infants. J Allergy Clin Immunol 128(6):1357–1360. doi:10.1016/j.jaci.2011.06.019e1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Devos S, Cormont F, Vrtala S, Hooghe-Peters E, Pirson F, Snick J (2006) Allergen-induced interleukin-9 production in vitro: correlation with atopy in human adults and comparison with interleukin-5 and interleukin-13. Clin Exp Allergy 36(2):174–182. doi:10.1111/j.1365-2222.2006.02422.x

    Article  CAS  PubMed  Google Scholar 

  107. Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA (2000) IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13(4):573–583

    Article  CAS  PubMed  Google Scholar 

  108. Kearley J, Erjefalt JS, Andersson C, Benjamin E, Jones CP, Robichaud A, Pegorier S, Brewah Y, Burwell TJ, Bjermer L, Kiener PA, Kolbeck R, Lloyd CM, Coyle AJ, Humbles AA (2011) IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am J Respir Crit Care Med 183(7):865–875. doi:10.1164/rccm.200909-1462OC

    Article  CAS  PubMed  Google Scholar 

  109. Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, Kaplan MH (2015) TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol 136(2):433–440. doi:10.1016/j.jaci.2015.01.021e431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritobrata Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Goswami, R. (2017). Th9 Cells: New Member of T Helper Cell Family. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics