Skip to main content

Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

Abstract

Glycine receptor chloride channels (GlyRs) are attractive drug targets for therapeutic intervention and are also more and more recognized in the context of in vitro neurotoxicity and developmental neurotoxicity testing. Assaying the functional properties of GlyR can serve as an indicator of cellular viability and the integrity of the developing and mature central nervous system. Human pluripotent NTERA-2 (NT2) stem cells undergo neuronal differentiation upon stimulation with retinoic acid and express a large variety of neuronal proteins—including GlyR. YFP-I152L, a halide-sensitive variant of yellow fluorescent protein, allows high-throughput fluorescence-based functional analysis of GlyRs in NT2 cells. Here we describe a protocol for phenotyping of cellular viability by functional analysis of GlyR in neuronally differentiated NT2 (NT2-N) cells using YFP-I152L as a reporter of functional integrity of GlyRs. The protocol describes neuronal differentiation of NT2 stem cells, transient transfection of NT2-N cells with YFP-I152L as well as functional imaging and analysis of data from high-content imaging.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6960-9_24

*Katharina Kuenzel and Sepideh Abolpour Mofrad contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Article  CAS  PubMed  Google Scholar 

  2. Lynch JW, Callister RJ (2006) Glycine receptors: a new therapeutic target in pain pathways. Curr Opin Invest Drug 7:48–53

    CAS  Google Scholar 

  3. Webb TI, Lynch JW (2007) Molecular pharmacology of the glycine receptor chloride channel. Curr Pharm Des 13:2350–2367

    Article  CAS  PubMed  Google Scholar 

  4. Meier JC, Henneberger C, Melnick I et al (2005) RNA editing produces glycine receptor alpha 3(P185L), resulting in high agonist potency. Nat Neurosci 8:736–744

    Article  CAS  PubMed  Google Scholar 

  5. Eichler SA, Kirischuk S, Juttner R et al (2008) Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J Cell Mol Med 12:2848–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eichler SA, Forstera B, Smolinsky B et al (2009) Splice-specific roles of glycine receptor alpha 3 in the hippocampus. Euro J Neurosci 30:1077–1091

    Article  Google Scholar 

  7. Xiong W, Cui T, Cheng K et al (2012) Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J Exp Med 209:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harvey RJ, Depner UB, Wassle H et al (2004) GlyR alpha 3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–887

    Article  CAS  PubMed  Google Scholar 

  9. Zeilhofer HU (2005) The glycinergic control of spinal pain processing. Cell Mol Life Sci 62:2027–2035

    Article  CAS  PubMed  Google Scholar 

  10. Bode A, Lynch JW (2014) The impact of human hyperekplexia mutations on glycine receptor structure and function. Molec Brain 7:2–2

    Article  Google Scholar 

  11. Chung SK, Vanbellinghen JF, Mullins JG et al (2010) Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci 30:9612–9620

    Article  CAS  PubMed  Google Scholar 

  12. Hall RCW, Hall RCW (1999) Long-term psychological and neurological complications of lindane poisoning. Psychosomatics 40:513–517

    Article  CAS  PubMed  Google Scholar 

  13. Islam R, Lynch JW (2012) Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels. Br J Pharmacol 165:2707–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuenzel K, Friedrich O, Gilbert DF (2016) A recombinant human pluripotent stem cell line stably expressing halide-sensitive YFP-I152L for GABAAR and GlyR-targeted high-throughput drug screening and toxicity testing. Front Mol Neurosci 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  15. Talwar S, Lynch JW, Gilbert DF (2013) Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells. PLoS One 8:e58479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alexander SP, Peters JA, Kelly E et al (2015) The concise guide to pharmacology 2015/16: ligand-gated ion channels. Br J Pharmacol 172:5870–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vale C, Fonfra E, Bujons J et al (2003) The organochlorine pesticides γ-hexachlorocyclohexane (lindane), α-endosulfan and dieldrin differentially interact with GABAA and glycine-gated chloride channels in primary cultures of cerebellar granule cells. Neuroscience 117:397–403

    Article  CAS  PubMed  Google Scholar 

  18. Narahashi T (2002) Nerve membrane ion channels as the target site of insecticides. Mini-Rev Med Chem 2:419–432

    Article  CAS  PubMed  Google Scholar 

  19. Mohamed F, Senarathna L, Percy A et al (2004) Acute human self-poisoning with the N-phenylpyrazole insecticide fipronil—a GABAA-gated chloride channel blocker. J Toxicol, Clin Toxicol 42:955–963

    Article  CAS  Google Scholar 

  20. Lee VM, Andrews PW (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J Neurosci 6:514–521

    CAS  PubMed  Google Scholar 

  21. Pleasure SJ, Page C, Lee VM (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12:1802–1815

    CAS  PubMed  Google Scholar 

  22. Sandhu JK, Sikorska M, Walker PR (2002) Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells. J Neurosci Res 68:604–614

    Article  CAS  PubMed  Google Scholar 

  23. Stewart R, Christie VB, Przyborski SA (2003) Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. Stem cells 21:248–256

    Article  CAS  PubMed  Google Scholar 

  24. Ozdener H (2007) Inducible functional expression of Bcl-2 in human astrocytes derived from NTera-2 cells. J Neurosci Method 159:8–18

    Article  CAS  Google Scholar 

  25. Coyne L, Shan M, Przyborski SA et al (2011) Neuropharmacological properties of neurons derived from human stem cells. Neurochem Int 59:404–412

    Article  CAS  PubMed  Google Scholar 

  26. Laurenza I, Pallocca G, Mennecozzi M et al (2013) A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies. International journal of developmental neuroscience: the official journal of the International Society for. Dev Neurosci 31:679–691

    Article  CAS  Google Scholar 

  27. Gao L, Lyons AR, Greenfield LJ Jr (2004) Hypoxia alters GABAA receptor function and subunit expression in NT2-N neurons. Neuropharmacology 46:318–330

    Article  CAS  PubMed  Google Scholar 

  28. Neelands TR, Greenfield LJ Jr, Zhang J et al (1998) GABAA receptor pharmacology and subtype mRNA expression in human neuronal NT2-N cells. J Neurosci 18:4993–5007

    CAS  PubMed  Google Scholar 

  29. Munir M, Lu L, Wang YH et al (1996) Pharmacological and immunological characterization of N-methyl-D-aspartate receptors in human NT2-N neurons. J Pharmacol Exp Therap 276:819–828

    CAS  Google Scholar 

  30. Galietta LJ, Haggie PM, Verkman AS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499:220–224

    Article  CAS  PubMed  Google Scholar 

  31. Balansa W, Islam R, Fontaine F et al (2010) Ircinialactams: subunit-selective glycine receptor modulators from Australian sponges of the family Irciniidae. Bioorg Med Chem 18:2912–2919

    Article  CAS  PubMed  Google Scholar 

  32. Balansa W, Islam R, Fontaine F et al (2013) Sesterterpene glycinyl-lactams: a new class of glycine receptor modulator from Australian marine sponges of the genus Psammocinia. Org Biomol Chem 11:4695–4701

    Article  CAS  PubMed  Google Scholar 

  33. Balansa W, Islam R, Gilbert DF et al (2013) Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 21:4420–4425

    Article  CAS  PubMed  Google Scholar 

  34. Gebhardt FM, Mitrovic AD, Gilbert DF et al (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilbert D, Esmaeili A, Lynch JW (2009) Optimizing the expression of recombinant alphabetagamma GABAA receptors in HEK293 cells for high-throughput screening. J Biomolec Screen 14:86–91

    Article  CAS  Google Scholar 

  36. Gilbert DF, Islam R, Lynagh T et al (2009) High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Molec Neurosci 2:17

    Article  Google Scholar 

  37. Gilbert DF, Wilson JC, Nink V et al (2009) Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry. Cytomet Part A 75:440–449

    Article  Google Scholar 

  38. Kruger W, Gilbert D, Hawthorne R et al (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380:340–345

    Article  CAS  PubMed  Google Scholar 

  39. Walzik MP, Vollmar V, Lachnit T et al (2015) A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 64:639–649

    Article  CAS  PubMed  Google Scholar 

  40. Wilhelm F, Winkler U, Morawski M et al (2011) The human ubiquitin C promoter drives selective expression in principal neurons in the brain of a transgenic mouse line. Neurochem Int 59:976–980

    Article  CAS  PubMed  Google Scholar 

  41. Abolpour Mofrad S, Kuenzel K, Friedrich O et al (2016) Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Developm Grow Differen 58:664–676

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding of the Staedtler Stiftung and Bavarian Equal Opportunities Sponsorship— Förderung von Frauen in Forschung und Lehre (FFL)—Promoting Equal Opportunities for Women in Research and Teaching. Mofrad SA performed the present work in fulfillment of the requirements for obtaining the degree Dr. rer. biol. hum. at the Friedrich- Alexander University of Erlangen-Nürnberg (FAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Kuenzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kuenzel, K., Mofrad, S.A., Gilbert, D.F. (2017). Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics