Skip to main content

Preparation of a Three-Dimensional Full Thickness Skin Equivalent

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1612))

Abstract

In vitro test systems are a promising alternative to animal models. Due to the use of human cells in a three-dimensional arrangement that allows cell–cell or cell–matrix interactions these models may be more predictive for the human situation compared to animal models or two-dimensional cell culture systems. Especially for dermatological research, skin models such as epidermal or full-thickness skin equivalents (FTSE) are used for different applications. Although epidermal models provide highly standardized conditions for risk assessment, FTSE facilitate a cellular crosstalk between the dermal and epidermal layer and thus can be used as more complex models for the investigation of processes such as wound healing, skin development, or infectious diseases. In this chapter, we describe the generation and culture of an FTSE, based on a collagen type I matrix and provide troubleshooting tips for commonly encountered technical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  2. Steinhoff M, Brzoska T, Luger TA (2001) Keratinocytes in epidermal immune responses. Curr Opin Allergy Clin Immunol 1(5):469–476

    CAS  PubMed  Google Scholar 

  3. Coquette A, Berna N, Vandenbosch A et al (1999) Differential expression and release of cytokines by an in vitro reconstructed human epidermis following exposure to skin irritant and sensitizing chemicals. Toxicology In Vitro 13(6):867–877

    Article  CAS  PubMed  Google Scholar 

  4. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874–880

    Article  CAS  PubMed  Google Scholar 

  5. Persidis A (1999) Tissue engineering. Nat Biotechnol 17(5):508–510

    Article  CAS  PubMed  Google Scholar 

  6. Rheinwald JG, Green H (1977) Epidermal growth-factor and multiplication of cultured human epidermal keratinocytes. Nature 265(5593):421–424

    Article  CAS  PubMed  Google Scholar 

  7. Groeber F, Holeiter M, Hampel M et al (2011) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliver Rev 63(4–5):352–366

    Article  CAS  Google Scholar 

  8. Ponec M (2002) Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliver Rev 54:S19–S30

    Article  CAS  Google Scholar 

  9. Rossi A, Appelt-Menzel A, Kurdyn S et al (2015) Generation of a three-dimensional full thickness skin equivalent and automated wounding. J Vis Exp (96)

    Google Scholar 

  10. Pageon H, Zucchi H, Rousset F et al (2014) Skin aging by glycation: lessons from the reconstructed skin model. Clin Chem Lab Med 52(1):169–174

    Article  CAS  PubMed  Google Scholar 

  11. Green CB, Cheng G, Chandra J et al (2004) RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275

    Article  CAS  PubMed  Google Scholar 

  12. Jannasch M, Groeber F, Brattig NW et al (2015) Development and application of three-dimensional skin equivalents for the investigation of percutaneous worm invasion. Exp Parasitol 150:22–30

    Article  CAS  PubMed  Google Scholar 

  13. Commandeur S, van Drongelen V, de Gruijl FR et al (2012) Epidermal growth factor receptor activation and inhibition in 3D in vitro models of normal skin and human cutaneous squamous cell carcinoma. Cancer Sci 103(12):2120–2126

    Article  CAS  PubMed  Google Scholar 

  14. Gschwandtner M, Mildner M, Mlitz V et al (2012) Histamine suppresses epidermal keratinocyte differentiation and impairs the inside-out barrier function of the epidermis—a new role for mast cells in inflammatory skin diseases. J Investig Dermatol 132:S58–S58

    Google Scholar 

  15. Replacement, refinement & reduction of animals in research, 2014. http://www.nc3rs.org.uk. Accessed 7 July 14

  16. Mallampati R, Patlolla RR, Agarwal S et al (2010) Evaluation of EpiDerm full thickness-300 (EFT-300) as an in vitro model for skin irritation: studies on aliphatic hydrocarbons. Toxicol In Vitro 24(2):669–676

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Michniak-Kohn BB (2012) Tissue engineered human skin equivalents. Pharmaceutics 4(1):26–41

    Article  PubMed  PubMed Central  Google Scholar 

  18. Black AT, Hayden PJ, Casillas RP et al (2010) Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 249(2):178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brohem CA, Cardeal LB, Tiago M et al (2011) Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res 24(1):35–50

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors kindly thank the Fraunhofer Gesellschaft and the Bayrisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Az.:VI/3-6622/453/12) for financially supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Groeber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Reuter, C., Walles, H., Groeber, F. (2017). Preparation of a Three-Dimensional Full Thickness Skin Equivalent. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics