Skip to main content

Generation of Recombinant Ebola Viruses Using Reverse Genetics

  • Protocol
  • First Online:
Ebolaviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1628))

Abstract

Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V (2011) Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antivir Res 91(2):195–208. doi:10.1016/j.antiviral.2011.06.003. PubMed PMID: 21699921; PubMed Central PMCID: PMCPMC3586226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flatz L, Bergthaler A, de la Torre JC, Pinschewer DD (2006) Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci U S A 103(12):4663–4668. doi:10.1073/pnas.0600652103. PubMed PMID: 16537369; PubMed Central PMCID: PMCPMC1450228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306(2):219–224. PubMed PMID: 12642095

    Article  CAS  PubMed  Google Scholar 

  4. Flick R, Flick K, Feldmann H, Elgh F (2003) Reverse genetics for crimean-congo hemorrhagic fever virus. J Virol 77(10):5997–6006. PubMed PMID: 12719591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75(4):1643–1655. PubMed PMID: 11160662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Freiberg A, Dolores LK, Enterlein S, Flick R (2008) Establishment and characterization of plasmid-driven minigenome rescue systems for Nipah virus: RNA polymerase I- and T7-catalyzed generation of functional paramyxoviral RNA. Virology 370(1):33–44. doi:10.1016/j.virol.2007.08.008. PubMed PMID: 17904180; PubMed Central PMCID: PMCPMC2716073

    Article  CAS  PubMed  Google Scholar 

  7. Groseth A, Feldmann H, Theriault S, Mehmetoglu G, Flick R (2005) RNA polymerase I-driven minigenome system for ebola viruses. J Virol 79(7):4425–4433. PubMed PMID: 15767442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinschewer DD, Perez M, de la Torre JC (2003) Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol 77(6):3882–3887. PubMed PMID: 12610166; PubMed Central PMCID: PMCPMC149515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin A, Staeheli P, Schneider U (2006) RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 80(12):5708–5715. doi:10.1128/JVI.02389-05. PubMed PMID: 16731909; PubMed Central PMCID: PMCPMC1472609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Wang C, Feng N, Wang H, Zheng X, Yang S et al (2015) Development of a reverse genetics system based on RNA polymerase II for Newcastle disease virus genotype VII. Virus Genes 50(1):152–155. doi:10.1007/s11262-014-1137-x. PubMed PMID: 25384536

    Article  CAS  PubMed  Google Scholar 

  11. Beniac DR, Melito PL, Devarennes SL, Hiebert SL, Rabb MJ, Lamboo LL et al (2012) The organisation of ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One 7(1):e29608. doi:10.1371/journal.pone.0029608. PubMed PMID: 22247782; PubMed Central PMCID: PMC3256159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bharat TA, Noda T, Riches JD, Kraehling V, Kolesnikova L, Becker S et al (2012) Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci U S A 109(11):4275–4280. doi:10.1073/pnas.1120453109. PubMed PMID: 22371572; PubMed Central PMCID: PMC3306676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342. PubMed PMID: 9971816

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mehedi M, Hoenen T, Robertson S, Ricklefs S, Dolan MA, Taylor T et al (2013) Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure. PLoS Pathog 9(10):e1003677. doi:10.1371/journal.ppat.1003677. PubMed PMID: 24146620; PubMed Central PMCID: PMC3798607

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neumann G, Ebihara H, Takada A, Noda T, Kobasa D, Jasenosky LD et al (2005) Ebola virus VP40 late domains are not essential for viral replication in cell culture. J Virol 79(16):10300–10307. PubMed PMID: 16051823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoenen T, Volchkov V, Kolesnikova L, Mittler E, Timmins J, Ottmann M et al (2005) VP40 octamers are essential for Ebola virus replication. J Virol 79(3):1898–1905. PubMed PMID: 15650213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O et al (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291(5510):1965–1969. PubMed PMID: 11239157

    Article  CAS  PubMed  Google Scholar 

  18. Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76(1):406–410. PubMed PMID: 11739705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biedenkopf N, Hartlieb B, Hoenen T, Becker S (2013) Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem 288(16):11165–11174. doi:10.1074/jbc.M113.461285. PubMed PMID: 23493393; PubMed Central PMCID: PMC3630872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE (2011) Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis 204(Suppl 3):S934–S940. doi:10.1093/infdis/jir320. PubMed PMID: 21987772

    Article  CAS  PubMed  Google Scholar 

  21. Watt A, Moukambi F, Banadyga L, Groseth A, Callison J, Herwig A et al (2014) A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol 88(18):10511–10524. doi:10.1128/JVI.01272-14. PubMed PMID: 24965473; PubMed Central PMCID: PMCPMC4178905

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G et al (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86(21):11779–11788. doi:10.1128/JVI.01525-12. PubMed PMID: 22915810; PubMed Central PMCID: PMCPMC3486333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shabman RS, Hoenen T, Groseth A, Jabado O, Binning JM, Amarasinghe GK et al (2013) An upstream open reading frame modulates ebola virus polymerase translation and virus replication. PLoS Pathog 9(1):e1003147. doi:10.1371/journal.ppat.1003147. PubMed PMID: 23382680; PubMed Central PMCID: PMCPMC3561295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S et al (2012) The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 8(8):e1002847. doi:10.1371/journal.ppat.1002847. PubMed PMID: 22876185; PubMed Central PMCID: PMCPMC3410889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP et al (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015. doi:10.1128/JVI.02459-09. PubMed PMID: 20071589; PubMed Central PMCID: PMC2826052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoenen T, Groseth A, Callison J, Takada A, Feldmann H (2013) A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antivir Res 99(3):207–213. doi:10.1016/j.antiviral.2013.05.017. PubMed PMID: 23751367; PubMed Central PMCID: PMCPMC3787978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Towner JS, Paragas J, Dover JE, Gupta M, Goldsmith CS, Huggins JW et al (2005) Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332(1):20–27. PubMed PMID: 15661137

    Article  CAS  PubMed  Google Scholar 

  28. Albarino CG, Uebelhoer LS, Vincent JP, Khristova ML, Chakrabarti AK, McElroy A et al (2013) Development of a reverse genetics system to generate recombinant Marburg virus derived from a bat isolate. Virology 446(1–2):230–237. doi:10.1016/j.virol.2013.07.038. PubMed PMID: 24074586

    Article  CAS  PubMed  Google Scholar 

  29. Enterlein S, Volchkov V, Weik M, Kolesnikova L, Volchkova V, Klenk HD et al (2006) Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 80(2):1038–1043. doi:10.1128/JVI.80.2.1038-1043.2006. PubMed PMID: 16379005; PubMed Central PMCID: PMCPMC1346851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S et al (2011) T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A 108(20):8426–8431. doi:10.1073/pnas.1019030108. PubMed PMID: 21536871; PubMed Central PMCID: PMC3100998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsuda Y, Hoenen T, Banadyga L, Weisend C, Ricklefs SM, Porcella SF et al (2015) An improved reverse genetics system to overcome cell-type-dependent Ebola virus genome plasticity. J Infect Dis. doi:10.1093/infdis/jiu681. PubMed PMID: 25810440

    PubMed  PubMed Central  Google Scholar 

  32. Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE (2011) Genomic RNA editing and its impact on Ebola virus adaptation during serial passages in cell culture and infection of guinea pigs. J Infect Dis 204(Suppl 3):S941–S946. doi:10.1093/infdis/jir321. PubMed PMID: 21987773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Thomas Hoenen for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison Groseth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Groseth, A. (2017). Generation of Recombinant Ebola Viruses Using Reverse Genetics. In: Hoenen, T., Groseth, A. (eds) Ebolaviruses. Methods in Molecular Biology, vol 1628. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7116-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7116-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7115-2

  • Online ISBN: 978-1-4939-7116-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics