Skip to main content

Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red

  • Protocol
  • First Online:
c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

The Congo Red (CR) assay is a standard biofilm test assessing the colony morphology of bacteria growing on agar plates supplemented with the diazo dye Congo Red. Biofilm forming Salmonella enterica serovar Typhimurium and Escherichia coli produce a red, dry, and rough (rdar) morphotype on CR-plates. The phenotype is characterized by staining of the extracellular matrix components curli (brown color) and cellulose (pink color) by CR. This method allows semiquantitative determination of the expression level of the individual matrix components and dissection of the regulatory networks controlling their production in response to c-di-GMP levels. Here, we describe the CR-assay and its variations and discuss the effect of deletion or overexpression of c-di-GMP turnover proteins on colony morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  2. Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25(1):31–42

    CAS  PubMed  Google Scholar 

  3. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hebraud M, Jaglic Z, Kacaniova M, Knochel S, Lourenco A, Mergulhao F, Meyer RL, Nychas G, Simoes M, Tresse O, Sternberg C (2016) Critical review on biofilm methods. Crit Rev Microbiol:1–39

    Google Scholar 

  4. O'Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp (47):2437

    Google Scholar 

  5. Sternberg C, Tolker-Nielsen T (2006) Growing and analyzing biofilms in flow cells. Curr Protoc Microbiol Chapter 1:Unit 1B 2.

    Google Scholar 

  6. Tolker-Nielsen T, Sternberg C (2014) Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy. Methods Mol Biol 1149:615–629

    Article  PubMed  Google Scholar 

  7. Choong FX, Bäck M, Fahlén S, Johansson LBG, Melican K, Rhen M, Nilsson KPR, Richter-Dahlfors A (2016) Real-time optotracing of curli and cellulose in live Salmonella biofilms using luminescent oligothiophenes. npj Biofilms and Microbiomes 2:16024

    Article  PubMed  PubMed Central  Google Scholar 

  8. Römling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62(11):1234–1246

    Article  PubMed  Google Scholar 

  9. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and Congo Red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18(4):661–670

    Article  CAS  Google Scholar 

  10. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463

    Article  CAS  PubMed  Google Scholar 

  12. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahmad I, Cimdins A, Beske T, Römling U (2017) Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol 17(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  14. Serra DO, Hengge R (2014) Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol 16(6):1455–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U (2014) Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 9(11):1261–1282

    Article  CAS  PubMed  Google Scholar 

  16. Mika F, Hengge R (2013) Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int J Mol Sci 14(3):4560–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerstel U, Römling U (2001) Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3(10):638–648

    Article  CAS  PubMed  Google Scholar 

  18. Gerstel U, Park C, Römling U (2003) Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49(3):639–654

    Article  CAS  PubMed  Google Scholar 

  19. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314

    Article  CAS  PubMed  Google Scholar 

  21. Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141(1):107–116

    Article  CAS  PubMed  Google Scholar 

  22. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38(1):128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Römling U, Rohde M, Olsen A, Normark S, Reinköster J (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36(1):10–23

    Article  PubMed  Google Scholar 

  24. Brombacher E, Dorel C, Zehnder AJ, Landini P (2003) The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149(Pt 10):2847–2857

    Article  CAS  PubMed  Google Scholar 

  25. Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Römling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93(3):439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bokranz W, Wang X, Tschäpe H, Römling U (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54(Pt 12):1171–1182

    Article  CAS  PubMed  Google Scholar 

  27. Simm R, Lusch A, Kader A, Andersson M, Römling U (2007) Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 189(9):3613–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Le Guyon S, Simm R, Rehn M, Römling U (2015) Dissecting the cyclic di-guanylate monophosphate signalling network regulating motility in Salmonella enterica serovar Typhimurium. Environ Microbiol 17(4):1310–1320

    Article  PubMed  Google Scholar 

  29. Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4(2):e00103–e00113

    Article  PubMed  PubMed Central  Google Scholar 

  30. Römling U, Rohde M (1999) Flagella modulate the multicellular behavior of Salmonella typhimurium on the community level. FEMS Microbiol Lett 180(1):91–102

    Article  PubMed  Google Scholar 

  31. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39(5):649–669

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaiser TD, Pereira EM, Dos Santos KR, Maciel EL, Schuenck RP, Nunes AP (2013) Modification of the Congo Red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis 75(3):235–239

    Article  CAS  PubMed  Google Scholar 

  34. Mariana NS, Salman SA, Neela V, Zamberi S (2009) Evaluation of modified Congo Red agar for detection of biofilm produced by clinical isolates of methicillin–resistance Staphylococcus aureus. Afr J Microbiol Res 3(6):330–338

    CAS  Google Scholar 

  35. Brooks JL, Jefferson KK (2014) Phase variation of poly-N-acetylglucosamine expression in Staphylococcus aureus. PLoS Pathog 10(7):e1004292

    Article  PubMed  PubMed Central  Google Scholar 

  36. Römling U, Bian Z, Hammar M, Sierralta WD, Normark S (1998) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180(3):722–731

    PubMed  PubMed Central  Google Scholar 

  37. Ahmad I, Rouf SF, Sun L, Cimdins A, Shafeeq S, Le Guyon S, Schottkowski M, Rhen M, Römling U (2016) BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb Cell Factories 15(1):177

    Article  Google Scholar 

  38. Chapartegui-González I, Lázaro-Díez M, Redondo-Salvo S, Amaro-Prelezzo E, Esteban-Rodríguez E, Ramos-Vivas J (2016) Biofilm formation in Hafnia alvei HUMV-5920, a human isolate. AIMS Microbiol 2(4):412–421

    Article  Google Scholar 

  39. Zogaj X, Bokranz W, Nimtz M, Römling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71(7):4151–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barati A, Ghaderpour A, Chew LL, Bong CW, Thong KL, Chong VC, Chai LC (2016) Isolation and characterization of aquatic-borne Klebsiella pneumoniae from tropical estuaries in Malaysia. Int J Environ Res Public Health 13(4):426

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ray VA, Morris AR, Visick KL (2012) A semi-quantitative approach to assess biofilm formation using wrinkled colony development. J Vis Exp (64): e4035

    Google Scholar 

  42. Köseoglu VK, Heiss C, Azadi P, Topchiy E, Guvener ZT, Lehmann TE, Miller KW, Gomelsky M (2015) Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation. Mol Microbiol 96(4):728–743

    Article  PubMed  Google Scholar 

  43. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134

    Article  CAS  PubMed  Google Scholar 

  44. Simm R, Fetherston JD, Kader A, Römling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187(19):6816–6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, Sondermann H (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6(3):e67

    Article  PubMed  PubMed Central  Google Scholar 

  46. Serra DO, Richter AM, Hengge R (2013) Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195(24):5540–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfau J, Youderian P (1990) Transferring plasmid DNA between different bacterial species with electroporation. Nucleic Acids Res 18(20):6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

A.C. receives funding from the German Research Foundation (DFG; CI 239/1-1, CI 239/2-1). The authors are grateful to Ute Römling for scientific discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Cimdins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cimdins, A., Simm, R. (2017). Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics