Skip to main content

A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an “alien” impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hill TM, Marians KJ (1990) Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro. Proc Natl Acad Sci U S A 87(7):2481–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larsen NB, Hickson ID, Mankouri HW (2014) Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes. Cell Cycle 13(19):2994–2998. doi:10.4161/15384101.2014.958912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larsen NB, Sass E, Suski C et al (2014) The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast. Nat Commun 5:3574. doi:10.1038/ncomms4574

    Article  PubMed  Google Scholar 

  4. Willis NA, Chandramouly G, Huang B et al (2014) BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 510(7506):556–559. doi:10.1038/nature13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willis NA, Scully R (2016) Spatial separation of replisome arrest sites influences homologous recombination quality at a Tus/Ter-mediated replication fork barrier. Cell Cycle:1–9. doi:10.1080/15384101.2016.1172149

  6. Natsume T, Kiyomitsu T, Saga Y et al (2016) Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep 15(1):210–218. doi:10.1016/j.celrep.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  7. Calzada A, Hodgson B, Kanemaki M et al (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19(16):1905–1919. doi:10.1101/gad.337205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahn JS, Osman F, Whitby MC (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24(11):2011–2023. doi:10.1038/sj.emboj.7600670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lambert S, Watson A, Sheedy DM et al (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121(5):689–702. doi:10.1016/j.cell.2005.03.022

    Article  CAS  PubMed  Google Scholar 

  10. Iraqui I, Chekkal Y, Jmari N et al (2012) Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8(10):e1002976. doi:10.1371/journal.pgen.1002976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liberi G, Cotta-Ramusino C, Lopes M et al (2006) Methods to study replication fork collapse in budding yeast. Methods Enzymol 409:442–462

    Article  CAS  PubMed  Google Scholar 

  12. Mankouri HW, Huttner D, Hickson ID (2013) How unfinished business from S-phase affects mitosis and beyond. EMBO J 32(20):2661–2671. doi:10.1038/emboj.2013.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raghuraman MK, Winzeler EA, Collingwood D et al (2001) Replication dynamics of the yeast genome. Science 294(5540):115–121. doi:10.1126/science.294.5540.115

    Article  CAS  PubMed  Google Scholar 

  14. Muller CA, Hawkins M, Retkute R et al (2014) The dynamics of genome replication using deep sequencing. Nucleic Acids Res 42(1):e3. doi:10.1093/nar/gkt878

    Article  PubMed  Google Scholar 

  15. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. doi:10.1038/nprot.2007.13

    Article  CAS  PubMed  Google Scholar 

  16. Looke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50(5):325–328. doi:10.2144/000113672

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is funded by the Danish National Research Foundation (DNRF115), The European Research Council, The Novo Nordisk Foundation, and The Nordea Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine W. Mankouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Larsen, N.B., Hickson, I.D., Mankouri, H.W. (2018). A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics