Skip to main content

Polyester-Based Nanoparticles for Delivery of Therapeutic Proteins

  • Protocol
  • First Online:
Recombinant Glycoprotein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

Abstract

Therapeutic proteins are widely used to treat severe conditions, such as oncologic and metabolic diseases, and also for vaccination. They are recognized for its high biopotency, but their hydrophilicity and high molecular weight make its transport through membranes difficult to achieve. They may also suffer in vivo structural instability caused by a proteolytic cleavage, turning them biological inactive. Polyester-based nanoparticles are useful tools to overcome such problems, and deliver therapeutic proteins in a controlled and localized manner, decreasing the number of administrations needed and enhancing the therapeutic outcome. The biodegradable and biocompatible nature of such carriers makes them feasible to be administered by invasive and noninvasive routes. Since nanoparticles are produced in suspension form, they are usually lyophilized to increase its long-term storage stability. Therefore, the aim of this work is to propose an intuitive protocol for production and lyophilization of polyester-based nanoparticles for therapeutic proteins delivery. The characterization techniques to evaluate the nanoparticle and lyophilisate features, as well as the structural stability of the loaded protein are also described. For these purposes, PLGA nanoparticles and human insulin are used as models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4(4):298–306

    Article  CAS  PubMed  Google Scholar 

  2. Mahmood I (2008) Methods to determine pharmacokinetic profiles of therapeutic proteins. Drug Discov Today Technol 5(2–3):e65–e69

    Article  PubMed  Google Scholar 

  3. Antosova Z, Mackova M, Kral V, Macek T (2009) Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 27(11):628–635

    Article  CAS  PubMed  Google Scholar 

  4. de la Fuente M, Csaba N, Garcia-Fuentes M, Alonso MJ (2008) Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine 3:845–857

    Article  PubMed  Google Scholar 

  5. Ibraheem D, Agusti G, Elaissari A, Fessi H (2014) Preparation and characterization of albumin-loaded polycaprolactone nanoparticles for in vivo applications. J Colloid Sci Biotechnol 3(2):160–166

    Article  CAS  Google Scholar 

  6. Gao X, Zhang X, Zhang X, Cheng C, Wang Z, Li C (2010) Encapsulation of BSA in polylactic acid–hyperbranched polyglycerol conjugate nanoparticles: preparation, characterization, and release kinetics. Polym Bull 65(8):787–805

    Article  CAS  Google Scholar 

  7. Fonte P, Araújo F, Seabra V, Reis S, van de Weert M, Sarmento B (2015) Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int J Pharm 496(2):850–862

    Article  CAS  PubMed  Google Scholar 

  8. Kumari A, Yadav S, Yadav S (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  CAS  PubMed  Google Scholar 

  9. Williams NA, Polli GP (1984) The lyophilization of pharmaceuticals: a literature review. J Parenter Sci Technol 38(2):48–59

    CAS  PubMed  Google Scholar 

  10. Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm 45(3):221–229

    Article  CAS  PubMed  Google Scholar 

  11. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58(15):1688–1713

    Article  CAS  PubMed  Google Scholar 

  12. Fonte P, Reis S, Sarmento B (2016) Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release 225:75–86

    Article  CAS  PubMed  Google Scholar 

  13. Fonte P, Soares S, Costa A, Andrade J, Seabra V, Reis S, Sarmento B (2012) Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter 2(4):329–339

    Article  PubMed  PubMed Central  Google Scholar 

  14. Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B (2013) Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm 456(2):370–381

    Article  CAS  PubMed  Google Scholar 

  15. Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, Sarmento B (2014) Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules 15(10):3753–3765

    Article  CAS  PubMed  Google Scholar 

  16. Fonte P, Lino PR, Seabra V, Almeida AJ, Reis S, Sarmento B (2016) Annealing as a tool for the optimization of lyophilization and ensuring of the stability of protein-loaded PLGA nanoparticles. Int J Pharm 503(1–2):163–173

    Article  CAS  PubMed  Google Scholar 

  17. Fonte P, Andrade F, Azevedo C, Pinto J, Seabra V, van de Weert M, Reis S, Sarmento B (2016) Effect of the freezing step in the stability and bioactivity of protein-loaded PLGA nanoparticles upon lyophilization. Pharm Res 33(11):2777–2793

    Article  CAS  PubMed  Google Scholar 

  18. Sarmento B, Ribeiro A, Veiga F, Ferreira D (2006) Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomed Chromatogr 20(9):898–903

    Article  CAS  PubMed  Google Scholar 

  19. Photon Correlation Spectroscopy (2002) In: Scarlett B (ed) Particle characterization: light scattering methods. Springer Netherlands, Dordrecht, pp 223–288. doi:10.1007/0-306-47124-8_5

  20. Clogston JD, Patri AK (2011) Zeta potential measurement. Methods Mol Biol 697:63–70

    Article  CAS  PubMed  Google Scholar 

  21. Van de Weert M, Hering J, Haris P (2005) Fourier transform infrared spectroscopy. In: Jiskoot W, Crommelin D (eds) Methods for structural analysis of protein pharmaceuticals. AAPS Press, Arlington, TX, pp 131–166

    Google Scholar 

  22. Dong A, Huang P, Caughey W (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29(13):3303–3308

    Article  CAS  PubMed  Google Scholar 

  23. Kendrick B, Dong A, Allison S, Manning M, Carpenter J (1996) Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states. J Pharm Sci 85(2):155–158

    Article  CAS  PubMed  Google Scholar 

  24. Kelly S, Jess T, Price N (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751(2):119–139

    Article  CAS  PubMed  Google Scholar 

  25. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bekard IB, Dunstan DE (2009) Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys J 97(9):2521–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer US, New York

    Book  Google Scholar 

  28. ICH Topic Q 1 A (R2), Stability testing of new drug substances and products (2003) European Medicines Agency, vol CPMP/ICH/2736/99. London, UK

    Google Scholar 

Download references

Acknowledgments

Flávia Sousa would like to thank the Fundação para a Ciência e a Tecnologia (FCT), Portugal for financial support (Grant SFRH/BD/112201/2015). This work was also financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fonte, P., Sousa, F., Sarmento, B. (2018). Polyester-Based Nanoparticles for Delivery of Therapeutic Proteins. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics