Skip to main content

Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1690))

Abstract

Borrelia burgdorferi is maintained in nature by a tick-rodent infection cycle where it traverses and colonizes a variety of host and vector tissues. A tick-borne murine model has been developed to study Lyme disease in the laboratory, which has a substantial impact in advancing our knowledge of spirochete infectivity and pathogenesis. Here, we detail a microinjection-based method for rapid and efficient infection of ticks with B. burgdorferi. While laboratory generation of B. burgdorferi-infected nymphs via natural larval engorgement on infected hosts and subsequent molting could take several weeks to months, the microinjection-based infection procedure requires only a few hours to generate infected ticks and allows introduction of defined quantities of spirochetes, including mutant isolates that are attenuated for infection in mice and thus cannot be naturally acquired by ticks. We also describe a quantitative PCR-based protocol for the measurement of B. burgdorferi in tick and murine hosts targeting spirochete RNA that is highly efficient, reproducible, and a better surrogate of active infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthold SW, DeSouza M, Fikrig E, Persing DH (1992) Lyme borreliosis in the laboratory mouse. In: Schuster SE (ed) Lyme disease. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 223–242

    Google Scholar 

  2. Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD (1990) Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162:133–138

    Article  CAS  PubMed  Google Scholar 

  3. Barthold SW, deSouza MS, Janotka JL, Smith AL, Persing DH (1993) Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143:959–971

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barthold SW, Diego C, Philipp MT (2010) Animal models of Borreliosis. In: Samuels DS, Radolf JD (eds) Borrelia, molecular biology. Host Interaction and Pathogenesis. Caister Academic Press, Norfolk, UK, pp 353–405

    Google Scholar 

  5. Kariu T, Coleman AS, Anderson JF, Pal U (2011) Methods for rapid transfer and localization of lyme disease pathogens within the tick gut (in eng). J Vis Exp pii:2544. 10.3791/2544

    Google Scholar 

  6. Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kariu T, Smith A, Yang X, Pal U (2013) A chitin Deacetylase-like protein is a predominant constituent of tick Peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector (in eng). PLoS One 8:e78376. doi:10.1371/journal.pone.0078376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kung F, Kaur S, Smith AA, Yang X, Wilder CN, Sharma K, Buyuktanir O, Pal U (2016) A Borrelia burgdorferi surface-exposed Transmembrane protein lacking detectable immune responses supports pathogen persistence and constitutes a vaccine target. J Infect Dis 213:1786–1795. doi:10.1093/infdis/jiw013

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468. doi:10.1016/j.cell.2004.10.027

    Article  CAS  PubMed  Google Scholar 

  10. Smith AA, Navasa N, Yang X, Wilder CN, Buyuktanir O, Marques A, Anguita J, Pal U (2016) Cross-species interferon signaling boosts Microbicidal activity within the tick vector. Cell Host Microbe 20:91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang X, Qin J, Promnares K, Kariu T, Anderson JF, Pal U (2013) Novel microbial virulence factor triggers murine lyme arthritis. J Infect Dis 207:907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang X, Smith AA, Williams MS, Pal U (2014) A Dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. J Biol Chem 289:12813–12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Yang X, Kumar M, Pal U (2009) BB0323 function is essential for Borrelia burgdorferi virulence and persistence through tick-rodent transmission cycle (in eng). J Infect Dis 200:1318–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samuels DS, Radolf JD (eds) (2010) Borrelia, molecular biology, host interaction and pathogenesis. Caister Academic Press, Norfolk, UK

    Google Scholar 

  15. Kariu T, Sharma K, Singh P, Smith AA, Backstedt B, Buyuktanir O, Pal U (2015) BB0323 and novel virulence determinant BB0238: Borrelia burgdorferi proteins that interact with and stabilize each other and are critical for infectivity. J Infect Dis 211:462–471

    Article  CAS  PubMed  Google Scholar 

  16. Kariu T, Yang X, Marks CB, Zhang X, Pal U (2013) Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 88:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar M, Yang X, Coleman AS, Pal U (2010) BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis 201:1084–1095. doi:10.1086/651172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nogueira SV, Smith AA, Qin JH, Pal U (2012) A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. Infect Immun 80:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U (2009) Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 74:112–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang X, Hegde S, Shroder DY, Smith AA, Promnares K, Neelakanta G, Anderson JF, Fikrig E, Pal U (2013) The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naive hosts (in eng). Microbes Infect 15:729–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang X, Lenhart TR, Kariu T, Anguita J, Akins DR, Pal U (2010) Characterization of unique regions of Borrelia burgdorferi surface-located membrane protein 1. Infect Immun 78:4477–4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang X, Lin YP, Heselpoth RD, Buyuktanir O, Qin J, Kung F, Nelson DC, Leong JM, Pal U (2016) Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection. Cell Microbiol 18:97–110

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U (2011) Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 10:4556–4566. doi:10.1021/pr200395b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye M, Sharma K, Thakur M, Smith AA, Buyuktanir O, Xiang X, Yang X, Promnares K, Lou Y, Yang XF, Pal U (2016) HtrA, a temperature- and stationary phase-activated protease involved in maturation of a key microbial virulence determinant, facilitates Borrelia burgdorferi infection in mammalian hosts. Infect Immun 84:2372–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We sincerely thank our collaborators and members of our laboratory, in particular, Frank Yang, Manish Kumar, Adam Coleman, John Anderson, Toru Kariu, Brian Backstedt, for their assistance with developing the protocols presented in this chapter. This work was supported by funding from University of Maryland, College Park as well as grants from the National Institute of Allergy and Infectious Diseases, Award Numbers AI080615, AI106059 and AI116620 to UP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Smith, A.A., Yang, X., Fikrig, E., Pal, U. (2018). Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA. In: Pal, U., Buyuktanir, O. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 1690. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7383-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7383-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7382-8

  • Online ISBN: 978-1-4939-7383-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics