Skip to main content

Mass Spectrometric Identification of Endogenous Peptides

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

Peptidomics is an emerging field focused in the analysis of endogenous peptides. Naturally occurring peptides are often endogenously produced protein fragments. Cleavage of precursor proteins by proteases generates peptides that may gain specialized functions not ascribed to their precursors, and which could reflect the state of a cell under certain physiological conditions or pathological processes.

Since peptides are found in complex matrices (e.g., serum, tear, urine, cerebrospinal fluid), they need to be isolated from the matrix and concentrated before they can be analyzed on mass spectrometry. This chapter describes methods for sample preparation prior to mass spectrometry analysis. In addition, different peptide fragmentation techniques are described which are complementary when analyzing naturally occurring peptides by liquid chromatography coupled online to tandem mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hallberg M (2015) Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 35(3):464–519

    Article  CAS  PubMed  Google Scholar 

  2. Schulz-Knappe P, Schrader M, Zucht HD (2005) The peptidomics concept. Comb Chem High Throughput Screen 8:697–704

    Article  CAS  PubMed  Google Scholar 

  3. Adermann K, John H, Ständker L et al (2004) Exploiting natural peptide diversity: novel research tools and drug leads. Curr Opin Biotechnol 15(6):599–606

    Article  CAS  PubMed  Google Scholar 

  4. Schulte I, Tammen H, Selle H et al (2005) Peptides in body fluids and tissues as markers of disease. Expert Rev Mol Diagn 5:145–157

    Article  CAS  PubMed  Google Scholar 

  5. Hathout Y (2007) Approaches to the study of the cell secretome. Expert Rev Proteomics 4:239–248

    Article  CAS  PubMed  Google Scholar 

  6. Bauça JM, Martínez-Morillo E, Diamandis EP (2014) Peptidomics of urine and other biofluids for cancer diagnostics. Clin Chem 60:1052–1061

    Article  PubMed  Google Scholar 

  7. Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 10:S55–S60

    Article  Google Scholar 

  8. Ramström M, Bergquist J (2004) Miniaturized proteomics and peptidomics using capillary liquid separation and high resolution mass spectrometry. FEBS Lett 567:92–95

    Article  PubMed  Google Scholar 

  9. Secher A, Kelstrup CD, Conde-Frieboes KW et al (2016) Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nat Commun 7:11436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sasaki K, Osaki T, Minamino N (2013) Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry. Mol Cell Proteomics 12:700–709

    Article  CAS  PubMed  Google Scholar 

  11. Azkargorta M, Soria J, Ojeda C, Guzmán F et al (2015) Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 14:2649–2458

    Article  CAS  PubMed  Google Scholar 

  12. Yeung YG, Nieves E, Angeletti RH et al (2008) Removal of detergents from protein digests for mass spectrometry analysis. Anal Biochem 382:135–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeung YG, Stanley ER (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci Chapter 16:Unit 16.12

    Google Scholar 

  14. Tabb DL, Huang Y, Wysocki VH et al (2004) Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides. Anal Chem 76:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen Y, Tolić N, Xie F et al (2011) Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 10:3929–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang d W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  17. Huang d W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  18. Thomas S, Karnik S, Barai RS et al (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:D774–D780

    Article  CAS  PubMed  Google Scholar 

  19. Waghu FH, Gopi L, Barai RS et al (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42:D1154–D1158

    Article  CAS  PubMed  Google Scholar 

  20. Song J, Tan H, Perry AJ et al (2012) PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One 7:e50300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been carried out with the financial support of the Basque Government, Bizkaia County, and ETORTEK and ELKARTEK programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Elortza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Azkargorta, M., Escobes, I., Iloro, I., Elortza, F. (2018). Mass Spectrometric Identification of Endogenous Peptides. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics