Skip to main content

Chromatin Immunoprecipitation in Human and Yeast Cells

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

Chromatin immunoprecipitation (ChIP) is an invaluable method to characterize interactions between proteins and genomic DNA, such as the genomic localization of transcription factors and posttranslational modification of histones. DNA and proteins are reversibly and covalently crosslinked using formaldehyde. Then the cells are lysed to release the chromatin. The chromatin is fragmented into smaller sizes either by micrococcal nuclease (MNase) or sonication and then purified from other cellular components. The protein-DNA complexes are enriched by immunoprecipitation (IP) with antibodies that target the epitope of interest. The DNA is released from the proteins by heat and protease treatment, followed by degradation of contaminating RNAs with RNase. The resulting DNA is analyzed using various methods, including PCR, qPCR, or sequencing. This protocol outlines each of these steps for both yeast and human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81: 4275–4279.

    Article  CAS  Google Scholar 

  2. Kuo M-H, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19(3):425–433. https://doi.org/10.1006/meth.1999.0879

    Article  CAS  PubMed  Google Scholar 

  3. Bulyk ML (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr Opin Biotechnol 17:1–9

    Article  Google Scholar 

  4. Mikkelsen TS, Ku MC, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie XH, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–U552. https://doi.org/10.1038/nature06008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kidder BL, Hu G, Zhao K (2011) ChIP-Seq: technical considerations for obtaining high quality data. Nat Immunol 12:918–922. https://doi.org/10.1038/ni.2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurdistani SK, Grunstein M (2003) In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31(1):90–95

    Article  CAS  PubMed  Google Scholar 

  7. Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412(6847):651–655. https://doi.org/10.1038/35088090

    Article  CAS  PubMed  Google Scholar 

  8. Dedon PC, Soults JA, Allis CD, Gorovsky MA (1991) A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal Biochem 197(1):83–90

    Article  CAS  PubMed  Google Scholar 

  9. Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3(4):698–709. https://doi.org/10.1038/nprot.2008.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Botquin V, Hess H, Fuhrmann G, Anastassiadis C, Gross MK, Vriend G, Scholer HR (1998) New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev 12(13):2073–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41(6):694. https://doi.org/10.2144/000112297

    Article  CAS  PubMed  Google Scholar 

  12. Green MR, Sambrook J (2012) Molecular cloning, vol 3, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  13. A step-by-step guide to successful chromatin immunoprecipitation (ChIP) assays (2016) ThermoFisher Scientific. https://wwwthermofishercom/us/en/home/life-science/antibodies/antibodies-learning-center/antibodies-resource-library/antibody-application-notes/step-by-step-guide-successful-chip-assayshtml. Accessed 8 Mar 2017

  14. Gibbons LE, Brangs HCG, Burden DW (2014) Bead beating: a primer. Random Primers (12)

    Google Scholar 

  15. Gade P, Kalvakolanu DV (2012) Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity. In: Vancura A (ed) Transcriptional regulation: methods and protocols. Springer New York, New York, NY, pp 85–104. https://doi.org/10.1007/978-1-61779-376-9_6

    Chapter  Google Scholar 

  16. Immunoprecipitation. (2017) ThermoFisher Scientific. https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-assays-analysis/immunoprecipitation.html. Accessed 8 Mar 2017

Download references

Acknowledgment

These protocols were developed with help from Aneeshkumar Arimbasseri and Kwan T. Chow. This work was supported by funds from North Carolina State University, NIH Grants R21E023377 and 1DP1DA044359, the GI Bill, and Simons Foundation Grant 495112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Keung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J.B., Keung, A.J. (2018). Chromatin Immunoprecipitation in Human and Yeast Cells. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics