Skip to main content

Allele-Specific Epigenome Editing

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

The discovery and adaptation of the CRISPR/Cas system for epigenome editing has allowed for a straightforward design of targeting modules which can direct epigenetic editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a “super-specific” variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the target genomic locus. This technology would be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is needed in one allele only. Here, we describe some principal setups of allele-specific epigenome editing systems and present exemplary data illustrating the feasibility of the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groote ML, Verschure PJ, Rots MG (2012) Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40(21):10596–10613. https://doi.org/10.1093/nar/gks863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113. https://doi.org/10.1016/j.tig.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179. https://doi.org/10.1007/s40142-016-0104-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park M, Keung AJ, Khalil AS (2016) The epigenome: the next substrate for engineering. Genome Biol 17(1):183. https://doi.org/10.1186/s13059-016-1046-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bashtrykov P, Kungulovski G, Jeltsch A (2016) Correction of aberrant imprinting by allele-specific epigenome editing. Clin Pharmacol Ther 99(5):482–484. https://doi.org/10.1002/cpt.295

    Article  CAS  PubMed  Google Scholar 

  7. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science (New York, NY) 252(5007):809–817

    Article  CAS  Google Scholar 

  8. Jamieson AC, Miller JC, Pabo CO (2003) Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2(5):361–368. https://doi.org/10.1038/nrd1087

    Article  CAS  PubMed  Google Scholar 

  9. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70(1):313–340. https://doi.org/10.1146/annurev.biochem.70.1.313

    Article  CAS  PubMed  Google Scholar 

  10. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh J-RJR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69. https://doi.org/10.1038/nmeth.1542

    Article  CAS  PubMed  Google Scholar 

  11. Händel E-MM, Cathomen T (2011) Zinc-finger nuclease based genome surgery: it's all about specificity. Curr Gene Ther 11(1):28–37

    Article  PubMed  Google Scholar 

  12. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  13. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  14. Kim Y, Kweon J, Kim A, Chon J, Yoo J, Kim H, Kim S, Lee C, Jeong E, Chung E (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258. https://doi.org/10.1038/nbt.2517

    Article  CAS  PubMed  Google Scholar 

  15. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N (2016) CRISPR guide RNA design for research applications. FEBS J. https://doi.org/10.1111/febs.13777

  17. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733–740. https://doi.org/10.1099/mic.0.023960-0

    Article  CAS  PubMed  Google Scholar 

  19. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–573. https://doi.org/10.1038/nature13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  Google Scholar 

  22. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7(4):350–360. https://doi.org/10.4161/epi.19507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425(3):479–491. https://doi.org/10.1016/j.jmb.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  25. Nunna S, Reinhardt R, Ragozin S, Jeltsch A (2014) Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One 9(1):e87703. https://doi.org/10.1371/journal.pone.0087703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12(24):2159–2166

    Article  CAS  PubMed  Google Scholar 

  27. Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8(1):1–11. https://doi.org/10.1186/s13072-015-0002-z

    Article  CAS  Google Scholar 

  28. Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP (2016) Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1112

    Article  PubMed Central  Google Scholar 

  29. Chen H, Kazemier HG, de Groote ML, Ruiters MHJ, Xu G-L, Rots MG (2014) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42(3):1563–1574. https://doi.org/10.1093/nar/gkt1019

    Article  CAS  PubMed  Google Scholar 

  30. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung KJ (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31(12):1137–1142. https://doi.org/10.1038/nbt.2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, Ruan K, Wang F, Xu G-l, Hu R (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009. https://doi.org/10.1038/celldisc.2016.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choudhury S, Cui Y, Lubecka K, Stefanska B, Irudayaraj J (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. https://doi.org/10.18632/oncotarget.10234

  33. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MHJ, Rots MG (2016) Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 7:12284. https://doi.org/10.1038/ncomms12284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. The Genomes Project C (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  36. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843. https://doi.org/10.1038/nbt.2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirano S, Nishimasu H, Ishitani R, Nureki O (2016) Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol Cell 61(6):886–894. https://doi.org/10.1016/j.molcel.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  38. Anders C, Bargsten K, Jinek M (2016) Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol Cell 61(6):895–902. https://doi.org/10.1016/j.molcel.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat Commun 5:4240. https://doi.org/10.1038/ncomms5240

    Article  CAS  PubMed  Google Scholar 

  40. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang Y-Y, Cheng L, Ye Z (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23(3):570–577. https://doi.org/10.1038/mt.2014.226

    Article  CAS  PubMed  Google Scholar 

  41. Shin JW, Kim K-HH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee J-MM (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576. https://doi.org/10.1093/hmg/ddw286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Capon SJ, Baillie GJ, Bower NI, da Silva JA, Paterson S, Hogan BM, Simons C, Smith KA (2016) Utilising polymorphisms to achieve allele-specific genome editing in zebrafish. Biol Open 6(1). https://doi.org/10.1242/bio.020974

    Article  PubMed Central  Google Scholar 

  43. Cacace R, Sleegers K, Broeckhoven C (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12(6):733–748. https://doi.org/10.1016/j.jalz.2016.01.012

    Article  PubMed  Google Scholar 

  44. Saudou F, Humbert S (2016) The biology of huntingtin. Neuron 89(5):910–926. https://doi.org/10.1016/j.neuron.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  45. Amir RE, den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188. https://doi.org/10.1038/13810

    Article  CAS  PubMed  Google Scholar 

  46. Horsthemke B, Buiting K (2008) Genomic imprinting and imprinting defects in humans. Adv Genet 61:225–246. https://doi.org/10.1016/S0065-2660(07)00008-9

    Article  CAS  PubMed  Google Scholar 

  47. Buiting K, Williams C, Horsthemke B (2016) Angelman syndrome – insights into a rare neurogenetic disorder. Nat Rev Neurol 12(10):584–593. https://doi.org/10.1038/nrneurol.2016.133

    Article  CAS  PubMed  Google Scholar 

  48. Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader–Willi/Angelman region. Am J Med Genet A 146A(16):2041–2052. https://doi.org/10.1002/ajmg.a.32364

    Article  CAS  PubMed  Google Scholar 

  49. Jurkowska RZ, Jeltsch A (2013) Genomic imprinting—the struggle of the genders at the molecular level. Angew Chem Int Ed 52(51):13524–13536. https://doi.org/10.1002/anie.201307005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory has been supported by the BW Foundation (BWST_NCRNA_007) and the BMBF (01GM1513E).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Bashtrykov or Albert Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bashtrykov, P., Jeltsch, A. (2018). Allele-Specific Epigenome Editing. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics