Skip to main content

Analyzing Copy Number Variation with Droplet Digital PCR

  • Protocol
  • First Online:
Digital PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1768))

Abstract

Many genomic segments vary in copy number among individuals of the same species, or between cancer and normal cells within the same person. Correctly measuring this copy number variation is critical for studying its genetic properties, its distribution in populations and its relationship to phenotypes. Droplet digital PCR (ddPCR) enables accurate measurement of copy number by partitioning a PCR reaction into thousands of nanoliter-scale droplets, so that a genomic sequence of interest—whose presence or absence in a droplet is determined by end-point fluorescence—can be digitally counted. Here, we describe how we analyze copy number variants using ddPCR and review the design of effective assays, the performance of ddPCR with those assays, the optimization of reactions, and the interpretation of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM, McCarroll SA (2015) Large multiallelic copy number variations in humans. Nat Genet 47(3):296–303. https://doi.org/10.1038/ng.3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. https://doi.org/10.1021/ac202028g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84(2):1003–1011. https://doi.org/10.1021/ac202578x

    Article  CAS  PubMed  Google Scholar 

  4. Usher CL, Handsaker RE, Esko T, Tuke MA, Weedon MN, Hastie AR, Cao H, Moon JE, Kashin S, Fuchsberger C, Metspalu A, Pato CN, Pato MT, McCarthy MI, Boehnke M, Altshuler DM, Frayling TM, Hirschhorn JN, McCarroll SA (2015) Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat Genet 47(8):921–925. https://doi.org/10.1038/ng.3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kouprina N, Pavlicek A, Noskov VN, Solomon G, Otstot J, Isaacs W, Carpten JD, Trent JM, Schleutker J, Barrett JC, Jurka J, Larionov V (2005) Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Res 15(11):1477–1486. https://doi.org/10.1101/gr.4212705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salemi M, Bosco P, Cali F, Calogero AE, Soma PF, Galia A, Lanzafame M, Romano C, Vicari E, Grasso G, Sirago P, Rappazzo G (2008) SPANX-B and SPANX-C (Xq27 region) gene dosage analysis in Sicilian patients with melanoma. Melanoma Res 18(4):295–299. https://doi.org/10.1097/CMR.0b013e32830aaa90

    Article  CAS  PubMed  Google Scholar 

  7. Hansen S, Eichler EE, Fullerton SM, Carrell D (2010) SPANX gene variation in fertile and infertile males. Syst Biol Reprod Med 55:18–26. https://doi.org/10.3109/19396360903312015

    Article  PubMed  Google Scholar 

  8. Boettger LM, Handsaker RE, Zody MC, McCarroll SA (2012) Structural haplotypes and recent evolution of the human 17q21.31 region. Nat Genet 44(8):881–885. https://doi.org/10.1038/ng.2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291. https://doi.org/10.1093/bioinformatics/btm091

    Article  CAS  PubMed  Google Scholar 

  10. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andreson R, Puurand T, Remm M (2006) SNPmasker: automatic masking of SNPs and repeats across eukaryotic genomes. Nucleic Acids Res 34(Web Server):W651–W655. https://doi.org/10.1093/nar/gkl125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31(13):3688–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hiratani I, Takebayashi S, Lu J, Gilbert DM (2009) Replication timing and transcriptional control: beyond cause and effect—part II. Curr Opin Genet Dev 19(2):142–149. https://doi.org/10.1016/j.gde.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koren A, Handsaker RE, Kamitaki N, Karlic R, Ghosh S, Polak P, Eggan K, McCarroll SA (2014) Genetic variation in human DNA replication timing. Cell 159(5):1015–1026. https://doi.org/10.1016/j.cell.2014.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koren A, Polak P, Nemesh J, Michaelson JJ, Sebat J, Sunyaev SR, McCarroll SA (2012) Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet 91(6):1033–1040. https://doi.org/10.1016/j.ajhg.2012.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koren A, McCarroll SA (2014) Random replication of the inactive X chromosome. Genome Res 24(1):64–69. https://doi.org/10.1101/gr.161828.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Our understanding of CNVs and assays has benefited greatly from interactions with our colleagues Robert Handsaker, Aswin Sekar, and Linda Boettger. We also thank Katherine Tooley for helpful discussions of this protocol. This work was supported by a grant from the National Human Genome Research Institute (R01 HG006855, to S.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. McCarroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bell, A.D., Usher, C.L., McCarroll, S.A. (2018). Analyzing Copy Number Variation with Droplet Digital PCR. In: Karlin-Neumann, G., Bizouarn, F. (eds) Digital PCR. Methods in Molecular Biology, vol 1768. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7778-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7778-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7776-5

  • Online ISBN: 978-1-4939-7778-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics