Skip to main content

Potential Role of Chromothripsis in the Genesis of Complex Chromosomal Rearrangements in Human Gametes and Preimplantation Embryo

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

The discovery of a new class of massive chromosomal rearrangement, baptized chromothripsis, in different cancers and congenital disorders has deeply modified our understanding on the genesis of complex genomic rearrangements. Several mechanisms, involving abortive apoptosis, telomere erosion, mitotic errors, micronuclei formation, and p53 inactivation, might cause chromothripsis. The remarkable point is that all these plausible mechanisms have been identified in the field of human reproduction as causal factors for reproductive failures and chromosomal abnormality genesis. Specific features of gametogenesis and early embryonic development may contribute to the emergence of chromothripsis. Multiple lines of evidence support the assumption that chromothripsis may arise more frequently than previously thought in both gametogenesis and early human embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Magrangeas F, Avet-Loiseau H, Munshi NC et al (2011) Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118:675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rode A, Maass KK, Willmund KV et al (2016) Chromothripsis in cancer cells: an update. Int J Cancer 138:2322–2333

    Article  CAS  PubMed  Google Scholar 

  4. Kloosterman WP, Gurvey V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20:1916–1924

    Article  CAS  PubMed  Google Scholar 

  5. Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96:651–656

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tubio JMC, Estivill X (2011) When catastrophe strikes a cell. Nature 470:476–477

    Article  CAS  PubMed  Google Scholar 

  8. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mardin BR, Drainas AP, Waszak SM et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11:828. https://doi.org/10.15252/msb.20156505

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maciejowski j LY, Bosco N et al (2015) Chromothripsis and Kataegis induced by telomere crisis. Cell 163:1641–1654

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102:1785–1796

    Article  PubMed  Google Scholar 

  13. Daughtry BL, Chavez SL (2016) Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 363:201–225

    Article  PubMed  Google Scholar 

  14. Pellestor F (2014) Chromothripsis: how does such a catastrophic event impact human reproduction ? Hum Reprod 29:388–393

    Article  CAS  PubMed  Google Scholar 

  15. Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91:653–660

    Article  CAS  PubMed  Google Scholar 

  16. Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ivkov R, Bunz F (2015) Pathways to chromothripsis. Cell Cycle 14:2886–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236

    Article  CAS  PubMed  Google Scholar 

  19. Kloosterman WP, Cuppen E (2013) Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 25:341–348

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Liu J, Ouyang L et al (2016) CTLP scanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 44(W1):W252–W258. https://doi.org/10.1093/nar/gkw434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen M et al (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1:648–655

    Article  CAS  PubMed  Google Scholar 

  22. Macera MJ, Sobrino A, Levy B et al (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35:299–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 15:494–500

    Article  Google Scholar 

  24. Anderson SE, Kamath A, Pilz DT et al (2016) A rare example of germ-line chromothripsis resulting in large genomic imbalance. Clin Dysmorphol 25:58–62

    Article  PubMed  Google Scholar 

  25. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–1036

    Article  CAS  PubMed  Google Scholar 

  26. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  27. Tang HL, Tang HM, Mak KH et al (2012) Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 23:2240–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakkas D, Seli E, Bizzaro D et al (2003) Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodeling during spermatogenesis. Reprod Biomed Online 7:428–432

    Article  PubMed  Google Scholar 

  29. Jones MJK, Jallepalli PV (2012) Chromothripsis: chromosomes in crisis. Dev Cell 23:908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Delhanty JDA, Pellestor F (eds) (2011) Aneuploidy. Cytogenet Genome Res 133:2–4

    Google Scholar 

  31. Baarends WM, van der Laan R, Grootegoed A (2001) DNA repair mechanisms and gametogenesis. Reproduction 121:31–39

    Article  CAS  PubMed  Google Scholar 

  32. Oliver-Bonnet M, Ko E, Martin RH (2005) Male infertility in reciprocal translocation carriers: the sex body affair. Cytogenet Genome Res 111:434–346

    Article  Google Scholar 

  33. Martin RH (2008) Cytogenetic determinants of male fertility. Hum Reprod Update 14:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aoki VW, Liu L, Carrell DT (2005) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306

    Article  CAS  PubMed  Google Scholar 

  35. Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435

    Article  CAS  PubMed  Google Scholar 

  36. Carroll J, Marangos P (2013) The DNA damage response in mammalian oocytes. Front Genet 4:1–9

    Article  CAS  Google Scholar 

  37. Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends Genet 24:86–93

    Article  CAS  PubMed  Google Scholar 

  38. Marchetti F, Essers J, Kanaar R et al (2007) Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A 104:17725–17729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaroudi S, Kakourou G, Cawood S et al (2009) Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod 24:2649–2655

    Article  CAS  PubMed  Google Scholar 

  40. Steuerwald N (2005) Meiotic spindle checkpoints for assessment of aneuploid oocytes. Cytogenet Genome Res 111:256–259

    Article  CAS  PubMed  Google Scholar 

  41. Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186

    Article  CAS  PubMed  Google Scholar 

  42. Pellestor F, Anahory T, Hamamah S (2005) The chromosomal analysis of human oocytes. An overview of established procedures. Hum Reprod Update 11:15–32

    Article  CAS  PubMed  Google Scholar 

  43. McLay DW, Clarke HJ (2003) Remodeling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmadi A, Ng SC (1999) Developmental capacity of damaged spermatozoa. Hum Reprod 14:2279–2285

    Article  CAS  PubMed  Google Scholar 

  45. Eichenlaub-Ritter U, Schmiady H, Kentenich H et al (1995) Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod 10:2343–2349

    Article  CAS  PubMed  Google Scholar 

  46. Meyerson M, Pellman D (2011) Cancer genomes evolve by pulverizing single chromosome. Cell 144:9–10

    Article  CAS  PubMed  Google Scholar 

  47. Lebedev I (2011) Mosaic aneuploidy in early fetal losses. Cytogenet Genome Res 133:169–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the unit of Chromosomal Genetics is supported by the CHU research platform ChromoStem (http://www.chu-montpellier.fr/fr/chercheurs/plateformes/les-plateformes-recherche/chromostem/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Pellestor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pellestor, F., Gatinois, V. (2018). Potential Role of Chromothripsis in the Genesis of Complex Chromosomal Rearrangements in Human Gametes and Preimplantation Embryo. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics