Skip to main content

Tau Assembly into Filaments

  • Protocol
  • First Online:
Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1779))

Abstract

The brain-specific tau protein binds directly through microtubules to regulate dynamically its structure and function. It also plays a critical role in the pathogenesis of a number of neurodegenerative disorders collectively known as tauopathies, the most common of which is Alzheimer’s disease (AD). Under pathological conditions, the natively unfolded tau protein self-assembles into filamentous structures of aggregated, hyperphosphorylated tau. In AD brains, tau accumulates in the neuronal perikarya and processes as paired helical filaments (PHF) forming the neurofibrillary tangles (NFT) characteristic of the disease. Prominent tau neurofibrillary pathology is a common feature in all tauopathies and its development is associated with progressive neuronal loss and cognitive decline. A precise understanding of the cellular, biochemical, and structural mechanisms involved in the process of tau protein aggregation and fibril formation is key to design strategies to prevent, slow down, or stop the neurodegenerative pathway leading to neuronal loss in AD and other tauopathies. Herein, we describe some complementary experimental procedures for PHF purification from human postmortem brain, tau expression and purification, as well as in vitro formation of tau filaments from purified recombinant tau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weingarten MD, Lockwood AH, Hwo SY et al (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72:1858–1862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103:2739–2746

    Article  PubMed  CAS  Google Scholar 

  3. Drechsel DN, Hyman AA, Cobb MH et al (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3(10):1141–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Terwel D, Dewachter I, Van Leuven F (2002) Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. NeuroMolecular Med 2(2):151–165

    Article  PubMed  CAS  Google Scholar 

  5. Grundke-Iqbal I, Iqbal K, Quinlan M et al (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  6. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83:4044–4048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen F, David D, Ferrari A et al (2004) Posttranslational modifications of tau – role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5(6):503–515

    Article  PubMed  CAS  Google Scholar 

  8. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622

    Article  PubMed  CAS  Google Scholar 

  9. Neve RL, Harris P, Kosik KS et al (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res 387:271–280

    PubMed  CAS  Google Scholar 

  10. Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239:285–288

    Article  PubMed  CAS  Google Scholar 

  11. Goedert M, Spillantini MG, Potier MC et al (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  13. Morris M, Maeda S, Vossel K et al (2011) The many faces of tau. Neuron 70(3):410–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Medina M, Hernández F, Avila J (2016) New features about tau function and dysfunction. Biomol Ther 6(2):E21

    Google Scholar 

  15. Medina M, Avila J (2014) New perspectives on the role of tau in Alzheimer’s disease. Implications for therapy. Biochem Pharmacol 88:540–547

    Article  PubMed  CAS  Google Scholar 

  16. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4425–4430

    Article  Google Scholar 

  17. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 87(15):5827–5831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sanbrook J, Frisch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  19. Gómez-Ramos A, Abad X, López Fanarraga M et al (2004) Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer’s paired helical filaments. Brain Res 1007(1–2):57–64

    Article  PubMed  CAS  Google Scholar 

  20. Pérez M, Valpuesta JM, Medina M et al (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem 67(3):1183–1190

    Article  PubMed  Google Scholar 

  21. Ksiezak-Reding H, Wall JS (2005) Characterization of paired helical filaments by scanning transmission electron microscopy. Microsc Res Tech 67(3–4):175–195

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jesús Avila for helpful discussions throughout this work. This project was supported by the Carlos III Institute of Health and the Spanish Ministry of Economy, Industry and Competitiveness (SAF2016-78603-R to MM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pérez, M., Cuadros, R., Medina, M. (2018). Tau Assembly into Filaments. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 1779. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7816-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7816-8_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7815-1

  • Online ISBN: 978-1-4939-7816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics