Skip to main content

Cellobiohydrolase (CBH) Activity Assays

  • Protocol
  • First Online:
Cellulases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1796))

Abstract

Cellulosic biomass is the most abundant biopolymer on the earth. It has great potential to quench the thirst of liquid energy by producing biofuels and thus help to mitigate human reliance on fossil fuels. Although several cellulase activity assay methods have been used to disintegrate the glycosidic bonds, the appropriate selection of substrates and synergistic involvement of multiple enzymes in hydrolytic activity is not yet fully understood. The proper quantification of hydrolytic enzymes and hydrolysates is challenging because of the heterogeneity of cellulose, changes in enzyme-substrate ratio and the presence of some inhibitory compounds like cellobiose and cellodextran. In the glycosyl hydrolase (GH) family, cellobiohydrolase (CBH) is expected to disrupt the crystalline cellulose and release the sugar molecules. Several methods have been proposed for CBH assay with slight modification in substrate and quantification of hydrolysates. However, the Avicel method is still considered as the most promising and efficient hydrolytic technique so far. The most commonly used CBH assays including Avicel and other recent methods for proper quantification are outlined in this chapter. Also a qualitative screening of CBH producing bacteria using carboxymethyl cellulose (CMC) agar plates is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen H, Zhao X, Liu D (2016) Relative significance of the negative impacts of hemicelluloses on enzymatic cellulose hydrolysis is dependent on lignin content: evidence from substrate structural features and protein adsorption. ACS Sustain Chem Eng 4(12):6668–6679

    Article  CAS  Google Scholar 

  2. Horn S, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45

    Article  CAS  Google Scholar 

  3. Zhang Y, Ding SY, Mielenz JR et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223

    Article  CAS  Google Scholar 

  4. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644

    Article  CAS  Google Scholar 

  5. Annamalai N, Rajeswari MV, Sivakumar N (2016) Cellobiohydrolases: role, mechanism, and recent developments. In: Vijai Kumar G (ed) Microbial enzymes in bioconversions of biomass. Springer, New York, pp 29–35

    Chapter  Google Scholar 

  6. Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325

    Article  CAS  Google Scholar 

  7. Miettinen-Oinonen A, Suominen P (2002) Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl Environ Microbiol 68(8):3956–3964

    Article  CAS  Google Scholar 

  8. Geng A (2014) Genetic transformation and engineering of Trichoderma reesei for enhanced enzyme production. In: Geng A (ed) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 193–200

    Chapter  Google Scholar 

  9. Brooks MM, Tuohy MG, Savage AV et al (1992) The stereochemical course of reactions catalysed by the cellobiohydrolases produced by Talaromyces emersonii. Biochem J 283:31–34

    Article  CAS  Google Scholar 

  10. Gao L, Gao F, Wang L et al (2012) N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. J Biol Chem 287(19):15906–15915

    Article  CAS  Google Scholar 

  11. Maki M, Leung K, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Article  CAS  Google Scholar 

  12. Dashtban M, Maki M, Leung KT et al (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 30(4):302–309

    Article  CAS  Google Scholar 

  13. Zhang YHP, Hong J, Ye X (2009) Cellulase assays. In: Mielenz JR (ed) Biofuels: methods and protocols. Springer, New York, pp 213–231

    Chapter  Google Scholar 

  14. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  15. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose – structure and characterization. Cellul Chem Technol 45(12):13–21

    CAS  Google Scholar 

  16. Isogai A, Atalla R (1991) Amorphous celluloses stable in aqueous media: regeneration from SO2-amine solvent systems. J Polym Sci Part A Polym Chem 29(1):113–119

    Article  CAS  Google Scholar 

  17. Ioelovich M (2012) Study of cellulose interaction with concentrated solutions of sulfuric acid. ISRN Chem Eng 2012:428974

    Article  Google Scholar 

  18. Zhang Y, Cui J, Lynd L, Kuang L (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7(2):644–648

    Article  CAS  Google Scholar 

  19. Hao X, Shen W, Chen Z et al (2015) Self-assembled nanostructured cellulose prepared by a dissolution and regeneration process using phosphoric acid as a solvent. Carbohydr Polym 123:297–304

    Article  CAS  Google Scholar 

  20. Hong J, Wang Y, Ye X, Zhang YHP (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 1194(2):150–154

    Article  CAS  Google Scholar 

  21. Jia X, Chen Y, Shi C et al (2013) Preparation and characterization of cellulose regenerated from phosphoric acid. J Agric Food Chem 61(50):12405–12414

    Article  CAS  Google Scholar 

  22. Takahashi M, Takahashi H, Nakano Y et al (2010) Characterization of a cellobiohydrolase (MoCel6A) produced by Magnaporthe oryzae. Appl Environ Microbiol 76(19):6583–6590

    Article  CAS  Google Scholar 

  23. Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47(1):273–279

    Article  CAS  Google Scholar 

  24. Eibinger M, Ganner T, Bubner P et al (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938

    Article  CAS  Google Scholar 

  25. Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 80(330):6001

    Google Scholar 

  26. Hemsworth GR, Taylor EJ, Kim RQ et al (2013) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135(16):6069–6077

    Article  CAS  Google Scholar 

  27. Aachmann FL, Sørlie M, Skjåk-Bræk G et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci U S A 109(46):18779–18784

    Article  CAS  Google Scholar 

  28. Patel I, Kracher D, Su M et al (2016) Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCI6. Biotechnol Biofuels 9(1):108

    Article  Google Scholar 

  29. Riske FJ, Eveleigh DE, Macmillan JD (1990) Double-antibody sandwich enzyme-linked immunosorbent assay for cellobiohydrolase I. Appl Environ Microbiol 56(11):3261–3265

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Paudel YP, Qin W (2015) Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Appl Biochem Biotechnol 177(5):1186–1198

    Article  CAS  Google Scholar 

  31. Maki M, Broere M, Leung K, Qin W (2011) Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int J Biochem Mol Biol 2(2):146–154

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  33. Ozioko PC, Ikeyi Adachukwu IP, Ugwu OPC (2013) Review article cellulases their substrates activity and assay methods. Experiment 12(2):778–785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, H.K., Qin, W., Xu, C.(. (2018). Cellobiohydrolase (CBH) Activity Assays. In: LĂĽbeck, M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7877-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7876-2

  • Online ISBN: 978-1-4939-7877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics