Skip to main content

Methods for Discovery of Novel Cellulosomal Cellulases Using Genomics and Biochemical Tools

  • Protocol
  • First Online:
Cellulases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1796))

Abstract

Cell wall degradation by cellulases is extensively explored owing to its potential contribution to biofuel production. The cellulosome is an extracellular multienzyme complex that can degrade the plant cell wall very efficiently, and cellulosomal enzymes are therefore of great interest. The cellulosomal cellulases are defined as enzymes that contain a dockerin module, which can interact with a cohesin module contained in multiple copies in a noncatalytic protein, termed scaffoldin. The assembly of the cellulosomal cellulases into the cellulosomal complex occurs via specific protein–protein interactions. Cellulosome systems have been described initially only in several anaerobic cellulolytic bacteria. However, owing to ongoing genome sequencing and metagenomic projects, the discovery of novel cellulosome-producing bacteria and the description of their cellulosomal genes have dramatically increased in the recent years. In this chapter, methods for discovery of novel cellulosomal cellulases from a DNA sequence by bioinformatics and biochemical tools are described. Their biochemical characterization is also described, including both the enzymatic activity of the putative cellulases and their assembly into mature designer cellulosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stahlberg J, Johansson G, Pettersson G (1988) A binding-site-deficient, catalytically active, core protein of endoglucanase III from the culture filtrate of Trichoderma reesei. Eur J Biochem 173(1):179–183

    Article  CAS  Google Scholar 

  2. Tamaru Y, Karita S, Ibrahim A et al (2000) A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 182(20):5906–5910

    Article  CAS  Google Scholar 

  3. Bergquist PL, Gibbs MD, Morris DD et al (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28(2):99–110

    Article  CAS  Google Scholar 

  4. Centeno MS, Goyal A, Prates JA et al (2006) Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus. FEMS Microbiol Lett 265(1):26–34

    Article  CAS  Google Scholar 

  5. Bagnara-Tardif C, Gaudin C, Belaich A et al (1992) Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Gene 119(1):17–28

    Article  CAS  Google Scholar 

  6. Druzhinina IS, Kopchinskiy AG, Kubicek EM, Kubicek CP (2016) A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness. Biotechnol Biofuels 9:75

    Article  Google Scholar 

  7. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495

    Article  CAS  Google Scholar 

  8. Meyer F, Paarman D, D'Souza M et al (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  Google Scholar 

  9. Bras JL, Cartmell A, Carvalho AL et al (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci U S A 108(13):5237–5242

    Article  CAS  Google Scholar 

  10. Ravachol J, Borne R, Tardif C et al (2014) Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 289(11):7335–7348

    Article  CAS  Google Scholar 

  11. Chassard C, Delmas E, Robert C et al (2012) Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 62(Pt1):138–143

    Article  CAS  Google Scholar 

  12. Ben David Y, Dassa B, Borovok I et al (2015) Ruminococcal cellulosome systems from rumen to human. Environ Microbiol 17(9):3407–3426

    Article  CAS  Google Scholar 

  13. Morais S, Ben David Y, Bensoussan L et al (2016) Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol 18(2):542–556

    Article  CAS  Google Scholar 

  14. Tokatlidis K, Salamitou S, Béguin P et al (1991) Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett 291(2):185–188

    Article  CAS  Google Scholar 

  15. Pages S, Bélaich A, Bélaich JP et al (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29(4):517–527

    Article  CAS  Google Scholar 

  16. Mechaly A, Yaron S, Lamed R et al (2000) Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39(2):170–177

    Article  CAS  Google Scholar 

  17. Schaeffer F, Matuschek M, Guglielmi G et al (2002) Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41(7):2106–2114

    Article  CAS  Google Scholar 

  18. Pinheiro BA, Proctor MR, Martinez-Fleites C et al (2008) The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J Biol Chem 283(26):18422–18430

    Article  CAS  Google Scholar 

  19. Rincon MT, Dassa B, Flint HJ et al (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 5(8):e12476

    Article  Google Scholar 

  20. Dassa B, Borovok I, Ruimy-Israeli V et al (2014) Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9(7):e99221

    Article  Google Scholar 

  21. Israeli-Ruimy V, Bule P, Jindou S et al (2017) Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci Rep 7:42355

    Article  CAS  Google Scholar 

  22. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  23. Peer A, Smith SP, Bayer EA et al (2009) Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol Lett 291(1):1–16

    Article  CAS  Google Scholar 

  24. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  25. Rincon MT, Cepeljnik T, Martin JC et al (2005) Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J Bacteriol 187:7569–7578

    Article  CAS  Google Scholar 

  26. Salamitou S, Tokatlidis K, Beguin P et al (1992) Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett 304(1):89–92

    Article  CAS  Google Scholar 

  27. Leibovitz E, Beguin P (1996) A new type of cohesin domain that specifically binds the dockerin domain of the clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 178(11):3077–3084

    Article  CAS  Google Scholar 

  28. Noach I, Frolow F, Jakoby H et al (2005) Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. J Mol Biol 348(1):1–12

    Article  CAS  Google Scholar 

  29. Shimon LJ, Bayer EA, Morag E et al (1997) A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Structure 5(3):381–390

    Article  CAS  Google Scholar 

  30. Ding SY, Rincon MT, Lamed R et al (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183(6):1945–1953

    Article  CAS  Google Scholar 

  31. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  Google Scholar 

  32. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245

    Article  CAS  Google Scholar 

  33. Bateman A, Coin L, Durbin R et al (2002) The Pfam protein families database. Nucleic Acids Res 30(1):276–280

    Article  CAS  Google Scholar 

  34. Haimovitz R, Barak Y, Morag E et al (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8(5):968–979

    Article  CAS  Google Scholar 

  35. Stern J, Artzi L, Moraïs S et al (2017) Carbohydrate depolymerization by intricate cellulosomal systems. In: Protein-carbohydrate interactions: methods and protocols, methods in molecular biology, D.W.A.A.A.L.v. Editor. Springer Science, Bueren, pp 93–116

    Chapter  Google Scholar 

  36. Barak Y, Handelsman T, Nakar D et al (2005) Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J Mol Recognit 18(6):491–501

    Article  CAS  Google Scholar 

  37. Lapidot A, Mechaly A, Shoham Y (1996) Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. J Biotechnol 51(3):259–264

    Article  CAS  Google Scholar 

  38. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426–428

    CAS  Google Scholar 

  39. Ghose TK (1987) Measurements of cellulase activity. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  40. Morais S, David YB, Bensoussan L et al (2015) Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol 18(2):542–556

    Article  Google Scholar 

  41. Caspi J, Irwin D, Lamed R et al (2006) Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal Biotransformation 24:3–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Moraïs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ben-David, Y., Dassa, B., Bensoussan, L., Bayer, E.A., Moraïs, S. (2018). Methods for Discovery of Novel Cellulosomal Cellulases Using Genomics and Biochemical Tools. In: Lübeck, M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7877-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7876-2

  • Online ISBN: 978-1-4939-7877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics