Skip to main content

Animal Models of Pulmonary Fibrosis

  • Protocol
  • First Online:
Lung Innate Immunity and Inflammation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1809))

Abstract

Pulmonary fibrosis is a debilitating disease and is often fatal. It may be the consequence of direct lung injury or the result of genetic defects and occupational, environmental, or drug-related exposures. In many cases the etiology is unknown. The pathogenesis of all forms of pulmonary fibrosis regardless of type of injury or etiology is incompletely understood. These disorders are characterized by the accumulation of extracellular matrix in the lung interstitium with a loss of lung compliance and impaired gas exchange that ultimately leads to respiratory failure. Animal models of pulmonary fibrosis have become indispensable in the improved understanding of these disorders. Multiple models have been developed each with advantages and disadvantages. In this chapter we discuss the application of two of the most commonly employed direct lung instillation models, namely, the induction of pulmonary fibrosis with bleomycin or fluorescein isothiocyanate (FITC). We provide details on design, materials, and methods and describe how these models can be best undertaken. We also discuss methods to induce fibrosis in aged mice using murine gamma-herpesvirus (γHV-68) and approaches to exacerbate bleomycin- or FITC-induced fibrosis using γHV-68.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Fibrosis AEJACoIP (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160. https://doi.org/10.1152/ajplung.00313.2007

    Article  PubMed  CAS  Google Scholar 

  3. Moore BB, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM (2013) Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 49(2):167–179. https://doi.org/10.1165/rcmb.2013-0094TR

    Article  CAS  Google Scholar 

  4. Peng R, Sridhar S, Tyagi G, Phillips JE, Garrido R, Harris P, Burns L, Renteria L, Woods J, Chen L, Allard J, Ravindran P, Bitter H, Liang Z, Hogaboam CM, Kitson C, Budd DC, Fine JS, Bauer CM, Stevenson CS (2013) Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease. PLoS One 8(4):e59348. https://doi.org/10.1371/journal.pone.0059348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 100(4):768–776. https://doi.org/10.1172/JCI119590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW, Yehualaeshet T, Lu B, Flavell RA, Milbrandt J, Homer RJ, Elias JA (2004) Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 200(3):377–389. https://doi.org/10.1084/jem.20040104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Korfhagen TR, Swantz RJ, Wert SE, McCarty JM, Kerlakian CB, Glasser SW, Whitsett JA (1994) Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice. J Clin Invest 93(4):1691–1699. https://doi.org/10.1172/JCI117152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hardie WD, Korfhagen TR, Sartor MA, Prestridge A, Medvedovic M, Le Cras TD, Ikegami M, Wesselkamper SC, Davidson C, Dietsch M, Nichols W, Whitsett JA, Leikauf GD (2007) Genomic profile of matrix and vasculature remodeling in TGF-alpha induced pulmonary fibrosis. Am J Respir Cell Mol Biol 37(3):309–321. https://doi.org/10.1165/rcmb.2006-0455OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194(6):809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536. https://doi.org/10.1172/JCI12568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sime PJ, Marr RA, Gauldie D, Xing Z, Hewlett BR, Graham FL, Gauldie J (1998) Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol 153(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A, Dave A, Engelhardt JF, Liu X, White ES, Thannickal VJ, Moore BB, Christensen PJ, Simon RH (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181(3):254–263. https://doi.org/10.1164/rccm.200810-1615OC

    Article  PubMed  CAS  Google Scholar 

  13. Pierce EM, Carpenter K, Jakubzick C, Kunkel SL, Flaherty KR, Martinez FJ, Hogaboam CM (2007) Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice. Am J Pathol 170(4):1152–1164. https://doi.org/10.2353/ajpath.2007.060649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Trujillo G, Meneghin A, Flaherty KR, Sholl LM, Myers JL, Kazerooni EA, Gross BH, Oak SR, Coelho AL, Evanoff H, Day E, Toews GB, Joshi AD, Schaller MA, Waters B, Jarai G, Westwick J, Kunkel SL, Martinez FJ, Hogaboam CM (2010) TLR9 differentiates rapidly from slowly progressing forms of idiopathic pulmonary fibrosis. Sci Transl Med 2(57):57ra82. https://doi.org/10.1126/scitranslmed.3001510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Blackwell TS, Tager AM, Borok Z, Moore BB, Schwartz DA, Anstrom KJ, Bar-Joseph Z, Bitterman P, Blackburn MR, Bradford W, Brown KK, Chapman HA, Collard HR, Cosgrove GP, Deterding R, Doyle R, Flaherty KR, Garcia CK, Hagood JS, Henke CA, Herzog E, Hogaboam CM, Horowitz JC, King TE Jr, Loyd JE, Lawson WE, Marsh CB, Noble PW, Noth I, Sheppard D, Olsson J, Ortiz LA, O’Riordan TG, Oury TD, Raghu G, Roman J, Sime PJ, Sisson TH, Tschumperlin D, Violette SM, Weaver TE, Wells RG, White ES, Kaminski N, Martinez FJ, Wynn TA, Thannickal VJ, Eu JP (2014) Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 189(2):214–222. https://doi.org/10.1164/rccm.201306-1141WS

    Article  PubMed  PubMed Central  Google Scholar 

  16. Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, Lasky JA, Loyd JE, Noth I, Olman MA, Raghu G, Roman J, Ryu JH, Zisman DA, Hunninghake GW, Colby TV, Egan JJ, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kondoh Y, Lynch DA, Muller-Quernheim J, Myers JL, Nicholson AG, Selman M, Toews GB, Wells AU, Martinez FJ, Idiopathic Pulmonary Fibrosis Clinical Research Network Investigators (2007) Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 176(7):636–643. https://doi.org/10.1164/rccm.200703-463PP

    Article  PubMed  Google Scholar 

  17. Fell CD, Martinez FJ, Liu LX, Murray S, Han MK, Kazerooni EA, Gross BH, Myers J, Travis WD, Colby TV, Toews GB, Flaherty KR (2010) Clinical predictors of a diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 181(8):832–837. https://doi.org/10.1164/rccm.200906-0959OC

    Article  PubMed  PubMed Central  Google Scholar 

  18. Geifman N, Rubin E (2013) The mouse age phenome knowledgebase and disease-specific inter-species age mapping. PLoS One 8(12):e81114. https://doi.org/10.1371/journal.pone.0081114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fox JG, Barthold S, Davisson M, Newcomer C, Quimby F, Smith A (2007) The mouse in aging research, 2nd edn. American College Laboratory Animal Medicine, Burlington, MA, pp 637–672

    Google Scholar 

  20. Redente EF, Jacobsen KM, Solomon JJ, Lara AR, Faubel S, Keith RC, Henson PM, Downey GP, Riches DW (2011) Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 301(4):L510–L518. https://doi.org/10.1152/ajplung.00122.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Stout-Delgado HW, Cho SJ, Chu SG, Mitzel DN, Villalba J, El-Chemaly S, Ryter SW, Choi AM, Rosas IO (2016) Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am J Respir Cell Mol Biol 55(2):252–263. https://doi.org/10.1165/rcmb.2015-0222OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sueblinvong V, Neujahr DC, Mills ST, Roser-Page S, Ritzenthaler JD, Guidot D, Rojas M, Roman J (2012) Predisposition for disrepair in the aged lung. Am J Med Sci 344(1):41–51. https://doi.org/10.1097/MAJ.0b013e318234c132

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sueblinvong V, Neveu WA, Neujahr DC, Mills ST, Rojas M, Roman J, Guidot DM (2014) Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury. Adv Biosci Biotechnol 5(1):19–30. https://doi.org/10.4236/abb.2014.51004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Naik PN, Horowitz JC, Moore TA, Wilke CA, Toews GB, Moore BB (2012) Pulmonary fibrosis induced by gamma-herpesvirus in aged mice is associated with increased fibroblast responsiveness to transforming growth factor-beta. J Gerontol A Biol Sci Med Sci 67(7):714–725. https://doi.org/10.1093/gerona/glr211

    Article  PubMed  CAS  Google Scholar 

  25. Torres-Gonzalez E, Bueno M, Tanaka A, Krug LT, Cheng DS, Polosukhin VV, Sorescu D, Lawson WE, Blackwell TS, Rojas M, Mora AL (2012) Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 46(6):748–756. https://doi.org/10.1165/rcmb.2011-0224OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. McMillan TR, Moore BB, Weinberg JB, Vannella KM, Fields WB, Christensen PJ, van Dyk LF, Toews GB (2008) Exacerbation of established pulmonary fibrosis in a murine model by gammaherpesvirus. Am J Respir Crit Care Med 177(7):771–780. https://doi.org/10.1164/rccm.200708-1184OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot 19(5):200–209

    CAS  Google Scholar 

  28. Schein PS, VT DV Jr, Hubbard S, Chabner BA, Canellos GP, Berard C, Young RC (1976) Bleomycin, adriamycin, cyclophosphamide, vincristine, and prednisone (BACOP) combination chemotherapy in the treatment of advanced diffuse histiocytic lymphoma. Ann Intern Med 85(4):417–422

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki Y, Miyake H, Sakai M, Inuyama Y, Matsukawa J (1969) Bleomycin in malignant tumors of head and neck. Keio J Med 18(3):153–162

    Article  CAS  PubMed  Google Scholar 

  30. Oka S, Sato K, Nakai Y, Kurita K, Hashimoto K, Oshibe M (1969) Treatment of lung cancer with bleomycin. The science reports of the research institutes, Tohoku University Ser C, Medicine. Tohoku Daigaku 16 (1):30–36

    Google Scholar 

  31. Clinical Screening Co-operative Group of the European Organization for Research on the Treatment of Cancer (1970) Study of the clinical efficiency of bleomycin in human cancer. Br Med J 2(5710):643–645

    Article  PubMed Central  Google Scholar 

  32. O’Sullivan JM, Huddart RA, Norman AR, Nicholls J, Dearnaley DP, Horwich A (2003) Predicting the risk of bleomycin lung toxicity in patients with germ-cell tumours. Ann Oncol 14(1):91–96

    Article  PubMed  Google Scholar 

  33. Sleijfer S (2001) Bleomycin-induced pneumonitis. Chest 120(2):617–624

    Article  CAS  PubMed  Google Scholar 

  34. Huang CH, Mirabelli CK, Jan Y, Crooke ST (1981) Single-strand and double-strand deoxyribonucleic acid breaks produced by several bleomycin analogues. Biochemistry 20(2):233–238

    Article  CAS  PubMed  Google Scholar 

  35. Tounekti O, Kenani A, Foray N, Orlowski S, Mir LM (2001) The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br J Cancer 84(9):1272–1279. https://doi.org/10.1054/bjoc.2001.1786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sugiura Y, Kikuchi T (1978) Formation of superoxide and hydroxy radicals in iron(II)-bleomycin-oxygen system: electron spin resonance detection by spin trapping. J Antibiot 31(12):1310–1312

    Article  CAS  Google Scholar 

  37. Liu LV, Bell CB 3rd, Wong SD, Wilson SA, Kwak Y, Chow MS, Zhao J, Hodgson KO, Hedman B, Solomon EI (2010) Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods. Proc Natl Acad Sci U S A 107(52):22419–22424. https://doi.org/10.1073/pnas.1016323107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Decker A, Chow MS, Kemsley JN, Lehnert N, Solomon EI (2006) Direct hydrogen-atom abstraction by activated bleomycin: an experimental and computational study. J Am Chem Soc 128(14):4719–4733. https://doi.org/10.1021/ja057378n

    Article  PubMed  CAS  Google Scholar 

  39. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R (2002) Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 83(3):111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar RK, Watkins SG, Lykke AW (1985) Pulmonary responses to bleomycin-induced injury: an immunomorphologic and electron microscopic study. Exp Pathol 28(1):33–43

    Article  CAS  PubMed  Google Scholar 

  41. Roberts SN, Howie SE, Wallace WA, Brown DM, Lamb D, Ramage EA, Donaldson K (1995) A novel model for human interstitial lung disease: hapten-driven lung fibrosis in rodents. J Pathol 176(3):309–318. https://doi.org/10.1002/path.1711760313

    Article  PubMed  CAS  Google Scholar 

  42. Christensen PJ, Goodman RE, Pastoriza L, Moore B, Toews GB (1999) Induction of lung fibrosis in the mouse by intratracheal instillation of fluorescein isothiocyanate is not T-cell-dependent. Am J Pathol 155(5):1773–1779. https://doi.org/10.1016/S0002-9440(10)65493-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fleischman RW, Baker JR, Thompson GR, Schaeppi UH, Illievski VR, Cooney DA, Davis RD (1971) Bleomycin-induced interstitial pneumonia in dogs. Thorax 26(6):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Organ L, Bacci B, Koumoundouros E, Barcham G, Milne M, Kimpton W, Samuel C, Snibson K (2015) Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. BMC Pulm Med 15:81. https://doi.org/10.1186/s12890-015-0071-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Snider GL, Hayes JA, Korthy AL (1978) Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin: pathology and stereology. Am Rev Respir Dis 117(6):1099–1108. https://doi.org/10.1164/arrd.1978.117.6.1099

    Article  PubMed  CAS  Google Scholar 

  46. Thrall RS, McCormick JR, Jack RM, McReynolds RA, Ward PA (1979) Bleomycin-induced pulmonary fibrosis in the rat: inhibition by indomethacin. Am J Pathol 95(1):117–130

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Williams KJ, Robinson NE, Lim A, Brandenberger C, Maes R, Behan A, Bolin SR (2013) Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5. PLoS One 8(10):e77754. https://doi.org/10.1371/journal.pone.0077754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Miele A, Dhaliwal K, Du Toit N, Murchison JT, Dhaliwal C, Brooks H, Smith SH, Hirani N, Schwarz T, Haslett C, Wallace WA, McGorum BC (2014) Chronic pleuropulmonary fibrosis and elastosis of aged donkeys: similarities to human pleuroparenchymal fibroelastosis. Chest 145(6):1325–1332. https://doi.org/10.1378/chest.13-1306

    Article  PubMed  Google Scholar 

  49. Williams K, Malarkey D, Cohn L, Patrick D, Dye J, Toews G (2004) Identification of spontaneous feline idiopathic pulmonary fibrosis: morphology and ultrastructural evidence for a type II pneumocyte defect. Chest 125(6):2278–2288

    Article  PubMed  Google Scholar 

  50. Corcoran BM, Cobb M, Martin MW, Dukes-McEwan J, French A, Fuentes VL, Boswood A, Rhind S (1999) Chronic pulmonary disease in West Highland white terriers. Vet Rec 144(22):611–616

    Article  CAS  PubMed  Google Scholar 

  51. Adamson IY, Bowden DH (1974) The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 77(2):185–197

    PubMed  PubMed Central  CAS  Google Scholar 

  52. McCullough B, Collins JF, Johanson WG Jr, Grover FL (1978) Bleomycin-induced diffuse interstitial pulmonary fibrosis in baboons. J Clin Invest 61(1):79–88. https://doi.org/10.1172/JCI108928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, Wilke CA, Toews GB (2005) CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 166(3):675–684. https://doi.org/10.1016/S0002-9440(10)62289-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. O’Dwyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

O’Dwyer, D.N., Moore, B.B. (2018). Animal Models of Pulmonary Fibrosis. In: Alper, S., Janssen, W. (eds) Lung Innate Immunity and Inflammation. Methods in Molecular Biology, vol 1809. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8570-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8570-8_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8569-2

  • Online ISBN: 978-1-4939-8570-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics