Skip to main content

High-Resolution Atomic Force Microscopy Imaging of Nucleic Acids

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Exploring the limits of spatial resolution has been a constant in the history of atomic force microscopy imaging. Since its invention in 1986, the AFM has beaten the barrier of resolution continuously, thanks to technical developments, miniaturization of tips, and implementation of new imaging modes. The double helix structure of DNA has been always at the horizon of resolution. Today, this milestone has been reached, not only imaging DNA but also its close relative double-stranded RNA. Here, we provide a comprehensive description of the methods employed and the steps required to image the helical periodicity of these two nucleic acids with the sample immersed in a buffer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H (2013) Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7(2):1817–1822. https://doi.org/10.1021/nn400071n

    Article  PubMed  CAS  Google Scholar 

  2. Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW (2014) Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10(16):3257–3261. https://doi.org/10.1002/smll.201400265

    Article  CAS  PubMed  Google Scholar 

  3. Ares P, Fuentes-Perez ME, Herrero-Galan E, Valpuesta JM, Gil A, Gomez-Herrero J, Moreno-Herrero F (2016) High resolution atomic force microscopy of double-stranded RNA. Nanoscale 8(23):11818–11826. https://doi.org/10.1039/c5nr07445b

    Article  CAS  PubMed  Google Scholar 

  4. Mou J, Czajkowsky DM, Zhang Y, Shao Z (1995) High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett 371(3):279–282

    Article  CAS  PubMed  Google Scholar 

  5. Maaloum M, Beker AF, Muller P (2011) Secondary structure of double-stranded DNA under stretching: elucidation of the stretched form. Phys Rev E Stat Nonlinear Soft Matter Phys 83(3 Pt 1):031903

    Article  CAS  Google Scholar 

  6. Kitazawa M, Ito S, Yagi A, Sakay N, Uekusa Y, Ohta R, Inaba K, Hayashi A, Hayashi Y, Tanemura M (2011) High-resolution imaging of plasmid DNA in liquids in dynamic mode atomic force microscopy using a carbon nanofiber tip. Jpn J Appl Phys 50(8):S3

    Article  CAS  Google Scholar 

  7. Leung C, Bestembayeva A, Thorogate R, Stinson J, Pyne A, Marcovich C, Yang J, Drechsler U, Despont M, Jankowski T, Tschope M, Hoogenboom BW (2012) Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. Nano Lett 12(7):3846–3850. https://doi.org/10.1021/nl301857p

    Article  CAS  PubMed  Google Scholar 

  8. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47(3):206–213. https://doi.org/10.1016/j.ymeth.2008.09.002

    Article  PubMed  CAS  Google Scholar 

  9. Cassina V, Manghi M, Salerno D, Tempestini A, Iadarola V, Nardo L, Brioschi S, Mantegazza F (2015) Effects of cytosine methylation on DNA morphology: an atomic force microscopy study. Biochim Biophys Acta 1860(1 Pt A):1–7. https://doi.org/10.1016/j.bbagen.2015.10.006

    Article  CAS  Google Scholar 

  10. Marti O, Drake B, Hansma PK (1987) Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Appl Phys Lett 51(7):484–486

    Article  CAS  Google Scholar 

  11. Martinez-Martin D, Carrasco C, Hernando-Perez M, de Pablo PJ, Gomez-Herrero J, Perez R, Mateu MG, Carrascosa JL, Kiracofe D, Melcher J, Raman A (2012) Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS One 7(1):e30204. https://doi.org/10.1371/journal.pone.0030204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Fukuma T, Jarvis SP (2006) Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions. Rev Sci Instrum 77:043701

    Article  CAS  Google Scholar 

  13. Yamada H, Kobayashi K, Fukuma T, Hirata Y, Kajita T, Matsushige K (2009) Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy. Appl Phys Express 2(9):095007

    Article  CAS  Google Scholar 

  14. Jaafar M, Martinez-Martin D, Cuenca M, Melcher J, Raman A, Gomez-Herrero J (2012) Drive-amplitude-modulation atomic force microscopy: from vacuum to liquids. Beilstein J Nanotechnol 3:336–344. https://doi.org/10.3762/bjnano.3.38

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923

    Article  Google Scholar 

  16. Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226. https://doi.org/10.1038/nnano.2012.38

    Article  CAS  PubMed  Google Scholar 

  17. Pittenger BB, Erina N (2012) Application note #128. Quantitative mechanical property mapping at the nanoscale with PeakForce QNM. Bruker, Santa Barbara, CA

    Google Scholar 

  18. de Pablo PJ, Colchero J, Gómez-Herrero J, Baro AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302

    Article  Google Scholar 

  19. Ortega-Esteban A, Horcas I, Hernando-Perez M, Ares P, Perez-Berna AJ, San Martin C, Carrascosa JL, de Pablo PJ, Gomez-Herrero J (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61. https://doi.org/10.1016/j.ultramic.2012.01.007

    Article  PubMed  CAS  Google Scholar 

  20. Rosa-Zeise A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol 8:1333–1338

    Article  Google Scholar 

  21. Kiracofe D, Kobayashi K, Labuda A, Raman A, Yamada H (2011) High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids. Rev Sci Instrum 82(1):013702. https://doi.org/10.1063/1.3518965

    Article  CAS  PubMed  Google Scholar 

  22. Han W, Lindsay SM, Jing T (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett 69(26):4111–4113

    Article  CAS  Google Scholar 

  23. Carrasco C, Ares P, de Pablo PJ, Gomez-Herrero J (2008) Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid. Rev Sci Instrum 79(12):126106. https://doi.org/10.1063/1.3053369

    Article  CAS  PubMed  Google Scholar 

  24. Dekker NH, Abels JA, Veenhuizen PT, Bruinink MM, Dekker C (2004) Joining of long double-stranded RNA molecules through controlled overhangs. Nucleic Acids Res 32(18):e140. https://doi.org/10.1093/nar/gnh138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Herrero-Galan E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez JR (2013) Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 135(1):122–131. https://doi.org/10.1021/ja3054755

    Article  CAS  PubMed  Google Scholar 

  26. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045

    Article  Google Scholar 

  27. Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  28. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64

    Article  CAS  Google Scholar 

  29. Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72(20):2613–1615

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Herrero-Galan and C. Aicart for providing details of the protocol for dsRNA and dsDNA fabrication and A. Gil for critical reading of the manuscript. We thank the financial support from the Spanish MINECO/FEDER (projects MAT2016-77608-C3-3-P and The “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0377) to J.G.-H. and FIS2014-58328-P to F.M.-H.). F.M.-H. also acknowledges support from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation (grant agreement No 681299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Moreno-Herrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ares, P., Gomez-Herrero, J., Moreno-Herrero, F. (2018). High-Resolution Atomic Force Microscopy Imaging of Nucleic Acids. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics