Skip to main content

Micropropagation in the Twenty-First Century

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

Despite more than a century of research on effective biotechnological methods, micropropagation continues to be an important tool for the large-scale production of clonal plantlets of several important plant species that retain genetic fidelity and are pest-free. In some cases, micropropagation is the only technique that supports the maintenance and promotes the economic value of specific agricultural species. The micropropagation of plants solved many phytosanitary problems and allowed both the expansion and access to high-quality plants for growers from different countries and economic backgrounds, thereby effectively contributing to an agricultural expansion in this and the last century. The challenges for micropropagation in the twenty-first century include cost reduction, enhanced efficiency, developing new technologies, and combining micropropagation with other systems/propagation techniques such as microcuttings, hydroponics, and aeroponics. In this chapter, we discuss the actual uses of micropropagation in this century, its importance and limitations, and some possible techniques that can effectively increase its wider application by replacing certain conventional techniques and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber. Mat Nat Kl Kais Akad Wiss Wien 111:69–92

    Google Scholar 

  2. White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64

    Article  Google Scholar 

  4. White PR (1939) Controlled differentiation in a plant tissue culture. Bull Torrey Bot Club 66:507–513

    Article  Google Scholar 

  5. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  6. Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787

    Article  CAS  Google Scholar 

  7. Sussex IM (2008) The scientific roots of modern plant biotechnology. Plant Cell 20:1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25

    Article  Google Scholar 

  9. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  10. White PR (1943) A handbook of plant tissue culture. Ronald Press Co, New York

    Google Scholar 

  11. Vij S, Pathak D, Kaur N et al (2016) Development and molecular confirmation of interspecific hybrids between Gossypium hirsutum and Gossypium arboreum. Agric Res J 53:169–172

    Article  Google Scholar 

  12. Cruz-Mendívil A, Rivera-López J, Germán-Baez LJ et al (2011) A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. Micro-tom from leaf explants. Hortscience 46:1655–1660

    Google Scholar 

  13. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  CAS  PubMed  Google Scholar 

  14. Kaur A, Sandhu JS (2015) High throughput in vitro micropropagation of sugarcane (Sacharum officinarum L.) from spindle leaf roll segments: cost analysis for Agri-business industry. Plant Cell Tiss Org Cult 120:339–350

    Article  CAS  Google Scholar 

  15. Chen C (2016) Cost analysis of micropropagation of Phalaenopsis. Plant Cell Tissue Organ Cult 126:167–175

    Article  Google Scholar 

  16. IAEA-TECDOC (2004) Low cost options for tissue culture technology in developing countries. IAEA-TECDOC-1384, IAEA, Vienna. http://www.pub.iaea.org/MTCD/publications/PDF/te_1384_web.pdf. Accessed 20 Apr 2018

  17. Xiao Y, Kozai T (2004) Commercial application of a photoautotrophic micropropagation systems using large vessels with forced ventilation: plantlet growth and production cost. Hortscience 39:1387–1391

    Google Scholar 

  18. Georget F, Courtel P, Garcia EM et al (2017) Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: a boost for somatic embryogenesis. Sci Hortic 216:177–185

    Article  CAS  Google Scholar 

  19. Erig AC, Schuch MW (2005) Photoautotrophic micropropagation and use of the natural light. Ciência Rural 35(4):961–965

    Article  Google Scholar 

  20. Purohit SD, Teixeira da Silva JA, Habibi N (2011) Current approaches for cheaper and better micropropagation technologies. Int J Plant Dev Biol 5:1–36

    Google Scholar 

  21. Kozai T (1991) Photoautotrophic micropropagation. In Vitro Cell Dev Biol Plant 27:47–51

    Article  Google Scholar 

  22. Chun YW (1992) Clonal propagation in non-aspen poplar hybrids. In: Ahuja MR (ed) Micropropagation of woody plants. Springer, Netherlands

    Google Scholar 

  23. Singh HP, Uma S, Selvarajan R, Karihaloo JL (2011) Micropropagation for production of quality banana planting material in AsiaPacific. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB), New Delhi, India. http://www.apcoab.org/uploads/files/1298295339pub_banana.pdf. Accessed 20 Apr 2018

  24. Souza ALK, Schuch MW, Antunes LEC et al (2011) Desempenho de mudas de mirtilo obtidas por micropropagação ou estaquia. Pesq Agrop Brasileira 46(8):868–874

    Article  Google Scholar 

  25. Ahloowalia BS (1994) Production and performance of potato mini-tubers. Euphytica 75:163–172

    Article  Google Scholar 

  26. Haapala T, Cortbaoui R, Chujoy E (2008) Production of disease-free seed tubers. International year of the potato (FAO). http://www.fao.org/potato-2008/pdf/IYP-9en.pdf. Accessed 20 Apr 2018

  27. Tierno R, Carrasco A, Ritter E et al (2014) Differential growth response and minituber production of three potato cultivars under aeroponics and greenhouse bed culture. Am J Potato Res 91:346–353

    Article  CAS  Google Scholar 

  28. Cardoso JC, Teixeira da Silva JA (2013) Gerbera micropropagation. Biotechnol Adv 31:1344–1357

    Article  CAS  PubMed  Google Scholar 

  29. Cardoso JC, Habermann G (2014) Adventitious shoot induction from leaf segments in Anthurium andreanum is affected by age of explant, leaf orientation and plant growth regulator. Hortic Environ Biotechnol 55:56–62

    Article  CAS  Google Scholar 

  30. Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain Laurel, Kalmia latifolia, by use of shoot tip culture. Combined Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  31. Oliveira LS, Brondani GE, Batagin-Piotto KD et al (2015) Micropropagation of Eucalyptus cloeziana mature trees. J Aus For 78(4):219–231

    Article  Google Scholar 

  32. Bourget MC (2008) An introduction to light-emitting diodes. Hortscience 43:1944–1946

    Google Scholar 

  33. Morrow RC (2008) LED lighting in horticulture. Hortscience 43:1947–1950

    Google Scholar 

  34. Wang Z, Li G-Y, He S-L, Teixeira da Silva JA, Tanaka M (2011) Effects of cold cathode fluorescent lamps (CCFLs) on growth of Gerbera jamesonii plantlets in vitro. Sci Hortic 130:482–484

    Article  CAS  Google Scholar 

  35. Norikane A, Teixeira da Silva JA, Tanaka M (2013) Growth of in vitro Oncidesa plantlets cultured under cold cathode fluorescent lamps (CCFLs) with super-elevated CO2 enrichment. AoB Plants 5:plt044. https://doi.org/10.1093/aobpla/plt044

    Article  PubMed Central  CAS  Google Scholar 

  36. Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. Hortscience 43:1951–1956

    Google Scholar 

  37. Nakamura et al (1996) Light emitting gallium nitride-based compound semiconductor device. U.S. Patent 5,578,839, filed Nov. 17, 1993 and issued Nov. 26

    Google Scholar 

  38. Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under super-bright red and blue light-emitting diodes (LED). Plant Cell Tissue Org Cult 73:43–52

    Google Scholar 

  39. Kim SJ, Hahn EJ, Heo JW, KY PK (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysanthemum plantlets in vitro. Sci Hortic 101:143–151

    Article  Google Scholar 

  40. Jao RC, Lai CC, Fang W, Chang SF (2005) Effect of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light emitting diodes. Hortscience 40:436–438

    Google Scholar 

  41. Poudel RP, Kataoka I, Mochioka R (2008) Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Org Cult 92:147–153

    Article  Google Scholar 

  42. Teixeira da Silva JA (2014a) The response of protocorm-like bodies of nine hybrid Cymbidium cultivars to light-emitting diodes. Environ Exp Biol 12:155–159

    Google Scholar 

  43. Teixeira da Silva JA (2014b) Photoauto-, photohetero- and photomixotrophic in vitro propagation of papaya (Carica papaya L.) and response of seed and seedlings to light-emitting diodes. Thammasat Int J Sci Tech 19:57–71

    Google Scholar 

  44. Song Y, Jiang C, Gao L (2016) Polychromatic supplemental lighting from underneath canopy is more effective to enhance tomato plant development by improving leaf photosynthesis and stomatal regulation. Front Plant Sci 7:1832. https://doi.org/10.3389/fpls.2016.01832

  45. Ooi A, Wong A, Ng TK, Marondedze C, Gehring C, Ooi BS (2016) Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Sci Rep 6:33885. https://doi.org/10.1038/srep33885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chang SX, Li CX, Yao XY et al (2016) Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage. Front Plant Sci 7:1144. https://doi.org/10.3389/fpls.2016.01144

    Article  Google Scholar 

  47. Park SY, Edward YC, Paek KY (2010) Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis. Plant Biotechnol Rep 4:303–309

    Article  CAS  Google Scholar 

  48. Kozai T (1991) Micropropagation under photoautotrophic conditions. In: Debergh PC, Zimmerman RH (eds) Micropropagation. Kluwer Academic Publishers, Springer Netherlands

    Google Scholar 

  49. Kozai T, lwabuchi K, Watanabe K et al (1991) Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tissue Org Cult 25:107–115

    Google Scholar 

  50. Tanaka M, Hirano T, Goi M et al (1992) Practical application of a novel disposable film culture vessel in micropropagation. Acta Hortic 300:77–84

    Article  Google Scholar 

  51. Tanaka M, Giang DTT, Murakami A (2005) Application of a novel disposable film culture system to photoautotrophic micropropagation of Eucalyptus uro-grandis (Urophylia x grandis). In vitro Cell Dev Biol Plant 41:173–180

    Article  Google Scholar 

  52. Teixeira da Silva JA (2006) Photoautotrophic micropropagation of Spathiphyllum. Photosynthetica 44:53–61

    Article  Google Scholar 

  53. Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Org Cult 105:149–158

    Article  CAS  Google Scholar 

  54. Aitken-Christie J, Kozai T, Smith ML (1995) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Springer Netherlands

    Book  Google Scholar 

  55. Shin K-S, Park SY, Paek K-Y (2014) Physiological and biochemical changes during acclimatization in a Doritaenopsis hybrid cultivated in different microenvironments in vitro. Environ Exp Bot 100:26–33

    Article  CAS  Google Scholar 

  56. Schimildt O, Torres Netto A, Schimildt ER et al (2015) Photosynthetic capacity, growth and water relations in ‘golden’ papaya cultivated in vitro under modifications in light quality, sucrose concentration and ventilation. Theor Exp Plant Physiol 27:7–18

    Article  CAS  Google Scholar 

  57. Cardoso JC, Rossi ML, Rosalem IB, Teixeira da Silva JA (2013) Pre-acclimatization in the greenhouse: an alternative to optimizing the micropropagation of gerbera. Sci Hortic 164:616–624

    Article  CAS  Google Scholar 

  58. Zapata Arias FJ, Akter S, Asadul Haque SM et al (2014) The significance of non-controlled natural light, temperature and humidity in the commercial micropropagation of Solanum tuberosum L. cultivar Diamant. Plant Tissue Cult Biotechnol 24:131–139

    Article  Google Scholar 

  59. Kodym A, Zapata-Arias FJ (1998) Natural light as an alternative light source for the in vitro culture of banana (Musa acuminata cv). ‘Grand Naine’. Plant Cell Tissue Org Cult 55:141–145

    Google Scholar 

  60. Kodym A, Hollenthoner S, Zapata Arias FJ (2001) Cost reduction in micropropagation of banana by using tubular skylights as source of natural lighting. In Vitro Cell Dev Biol Plant 37:237–242

    Article  Google Scholar 

  61. Costa FHS, Pasqual M, Pereira JES (2009) Anatomical and physiological modifications of micropropagated ‘Caipira’ banana plants under natural light. Sci Agric 66:323–330

    Article  Google Scholar 

  62. da Silva AB, Pasqual M, de Castro EM et al (2008) Luz natural na micropropagação do abacaxizeiro (Ananas comosus L. Merr). Interciência 33:839–843

    Google Scholar 

  63. Mazri MA (2012) Effect of liquid media and in vitro pre-acclimatization stage on shoot elongation and acclimatization of date palm (Phoenyx dactylifera L.) cv. Najda. J Ornam Plants 2:225–231

    Google Scholar 

  64. Teixeira SL, Ribeiro JM, Teixeira MT (2006) Influence of NaOCl on nutrient medium sterilization and on pineapple (Ananas comosus cv. Smooth cayenne) behavior. Plant Cell Tissue Org Cult 86:375–378

    Article  CAS  Google Scholar 

  65. Silva ALL, Brondani GE, Oliveira LS, Gonçalves NA (2013) Chemical sterilization of culture medium: a low cost alternative to in vitro establishment of plants. Sci For 41:257–264

    Google Scholar 

  66. Pais AK, da Silva AP, Souza JC et al (2016) Sodium hypochlorite sterilization of culture medium in micropropagation of Gerbera hybrida cv. Essandre. Afr J Biotechnol 15:1995–1998

    Article  CAS  Google Scholar 

  67. Cardoso JC (2009) Esterilização química de meio de cultura no cultivo in vitro de antúrio. Pesq Agrop Brasileira 44:785–788

    Article  Google Scholar 

  68. Cardoso JC, Teixeira da Silva JA (2012) Micropropagation of gerbera using chlorine dioxide (ClO2) to sterilize the culture medium. In Vitro Cell Dev Biol Plant 48:362–368

    Article  CAS  Google Scholar 

  69. Macek T, Král J, Vaněk T et al (1994) Chemical sterilization of nutrient media for plant cell cultures using diethylpyrocarbonate. Biotechnol Tech 8:885–888

    Article  CAS  Google Scholar 

  70. Yanagawa T, Nagai M, Ogino T, Maeguchi R (1995) Application of disinfectants to orchid seeds, plantlets and media as a means to prevent in vitro contamination. Lindleyana 10:33–36

    Google Scholar 

  71. Pan MJ, van Staden J (1999) Effect of activated charcoal, autoclaving and culture media on sucrose hydrolysis. Plant Growth Regul 29:135–141

    Article  CAS  Google Scholar 

  72. Uchôa PEA, Nogueira P Jr, Neto JAP, Lee TSG (1995) Biofactory of sugarcane at Ester sugar mill: achievements and problems. STAB 13:33–34

    Google Scholar 

  73. Lee TSG (ed) (2011) Biofábrica de plantas: produção industrial de plantas in vitro. Antiqua, Brazil

    Google Scholar 

  74. Teixeira JB (2011) Biorreator de immersão temporária - o futuro da produção industrial de plantas in vitro. In: Lee TSG (ed) Biofábrica de plantas: produção industrial de plantas in vitro. Antiqua, Brazil

    Google Scholar 

  75. Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell Tissue Org Cult 32:55–60

    Article  Google Scholar 

  76. Teisson C, Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terzi M et al (eds) Current issues in plant molecular and cellular biology. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  77. Cabral JB (2011) Sistema de imersão temporária (sit) na produção em larga escala de vitroplantas. In: Lee TSG (ed) Biofábrica de plantas: produção industrial de plantas in vitro. Antiqua, Brazil

    Google Scholar 

  78. Mozgová I, Muñoz-Viana R, Hennig L (2017) PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet 13:e1006562. https://doi.org/10.1371/journal.pgen.1006562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xing W, Bao Y, Luo P et al (2014) An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa. Acta Physiol Plant 36:2013–2023

    Article  CAS  Google Scholar 

  80. Wu J, Liu C, Seng S et al (2015) Somatic embryogenesis and Agrobacterium-mediated transformation of Gladiolus hybridus cv. ‘Advanced red’. Plant Cell Tissue Org Cult 120:717–728

    Article  CAS  Google Scholar 

  81. Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938. https://doi.org/10.3389/fpls.2016.00938

    Article  PubMed  PubMed Central  Google Scholar 

  82. Beyene G, Chauhan RD, Wagaba H et al (2016) Loss of CMD-2 resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis. Mol Plant Pathol 17:1095–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dey T, Saha S, Ghosh PD (2015) Somaclonal variation among somatic embryo derived plants – evaluation of agronomically important somaclones and detection of genetic changes by RAPD in Cymbopogon winterianus. S Afr J Bot 96:112–121

    Article  Google Scholar 

  84. Adu-Gyamfi R, Wetten A, Marcelino Rodríguez López C (2016) Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). PLoS One 11:e0158857. https://doi.org/10.1371/journal.pone.0158857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. ISAAA (2015) ISAAA Brief 51–2015: Executive summary. Global Status of Commercialized Biotech: GM Crops 2015. ISAAA. http://isaaa.org/resources/publications/briefs/51/executivesummary/default.asp, Accessed 20 Apr 2018

  86. Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506. https://doi.org/10.3389/fpls.2016.00506

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rotarenco V, Dicu G, State D, Fuia S (2010) New inducers of maternal haploids in maize. Maize Gen Cooperation Newsletter 84. http://www.agron.missouri.edu/mnl/84/PDF/15rotarenco.pdf. Accessed 20 Apr 2018

  88. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Germany

    Google Scholar 

  89. Schlupp I (2005) The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol Syst 36:1–689

    Article  Google Scholar 

  90. Yan H, Yang H-Y, Jensen WA (1989) An electron microscope study on in vitro parthenogenesis in sunflower. Sex Plant Reprod 2:154–156

    Article  Google Scholar 

  91. Blasco M, Badenes ML, del Mar Naval M (2016) Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production. Breed Sci 66:606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Germanà MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tissue Org Cult 66:59–66

    Google Scholar 

  93. Froelicher Y, Bassene JB, Jedidi-Neji E et al (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944

    Article  CAS  PubMed  Google Scholar 

  94. Chiancone B, Gniech Karasawa MM, Gianguzzi V et al (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. Ex tan., cvs. ‘Monreal Rosso’ and ‘Nules’. Front Plant Sci 6:413. https://doi.org/10.3389/fpls.2015.00413

    Article  PubMed  PubMed Central  Google Scholar 

  95. Höfer M (2004) In vitro androgenesis in apple – improvement of the induction phase. Plant Cell Rep 22:365–370

    Article  CAS  PubMed  Google Scholar 

  96. Jakse M, Bohanec B (2003) Haploid induction in onion via gynogenesis. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Double haploid production in crop plants. Springer, Netherlands

    Google Scholar 

  97. Cardoso JC, Martinelli AP, Germanà MA, Latado RR (2014) In vitro anther culture of sweet orange (Citrus sinensis L. Osbeck) genotypes and of a C. clementina x C. sinensis ‘Hamlin’ hybrid. Plant Cell Tissue Org 117:455–464

    Article  Google Scholar 

  98. Żur I, Dubas E, Krzewska M et al (2015) Hormonal requirements for effective induction of microspore embryogenesis in triticale (x Triticosecale Wittm.) anther cultures. Plant Cell Rep 34:47–62

    Article  CAS  PubMed  Google Scholar 

  99. Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357. https://doi.org/10.3389/fpls.2016.00357

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  101. Kelliher T, Starr D, Wang W et al (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414. https://doi.org/10.3389/fpls.2016.00414

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brew-Appiah RAT, Ankrah N, Liu W (2013) Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS One 8:e80155. https://doi.org/10.1371/journal.pone.0080155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Datta K, Sahoo G, Krishnan S et al (2014) Genetic stability developed for β-carotene synthesis in BR29 rice line using dihaploid homozygosity. PLoS One 9:e100212. https://doi.org/10.1371/journal.pone.0100212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yamashita H, Shigehara I, Haniuda T (1998) Production of triploid grapes by in ovulo embryo culture. Vitis 37:113–117

    Google Scholar 

  105. Ji W, Li GR, Luo YX et al (2015) In vitro embryo rescue culture of F1 progenies from crosses between different ploidy grapes. Genet Mol Res 14:18616–18622

    Article  CAS  PubMed  Google Scholar 

  106. Hoshino Y, Miyashita H, Thomas TD (2011) In vitro culture of endosperm and its application in plant breeding: approaches to polyploidy breeding. Sci Hortic 130:1–8

    Article  CAS  Google Scholar 

  107. Máthé Á, Hassan F, Abdul Kader A (2015) In vitro micropropagation of medicinal and aromatic plants. In: Máthé Á (ed) Medicinal and aromatic plants of the world (Vol. 1 of the series medicinal and aromatic plants of the world). Springer Science+Business Media, Netherlands

    Chapter  Google Scholar 

  108. Wu S, Zu Y, Wu M (2003) High yield production of salidroside in the suspension culture of Rhodiola sachalinensis. J Biotechnol 106:33–43

    Article  CAS  PubMed  Google Scholar 

  109. Lata H, Chandra S, Khan IA, ElSohly MA (2010) High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med 76:1629–1633

    Article  CAS  PubMed  Google Scholar 

  110. Ketchum REB, Gibson DM, Croteau RB, Schuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105

    Article  CAS  PubMed  Google Scholar 

  111. Yoo NH, Kim OT, Kim JB et al (2011) Enhancement of centelloside production from cultured plants of Centella asiatica by combination of thidiazuron and methyl jasmonate. Plant Biotechnol Rep 5:283–287

    Article  Google Scholar 

  112. Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Org Cult 113:25–39

    Article  CAS  Google Scholar 

  113. Sivanandhan G, Kapil Dev G, Jeyaraj M et al (2013) A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal. Protoplasma 250:885–898

    Article  CAS  PubMed  Google Scholar 

  114. Yesil-Celiktas O, Nartop P, Gurel A, Bedir E, Vardar-Sukan F (2007) Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. J Plant Physiol 164:1536–1542

    Article  CAS  PubMed  Google Scholar 

  115. Pi Y, Jiang KJ, Hou R et al (2010) Examination of camptothecin and 10-hydroxycamptothecin in Camptotheca acuminata plant and cell culture, and the affected yields under several cell culture treatments. Biocell 34:139–143

    PubMed  Google Scholar 

  116. Kochan E, Wasiela M, Sienkiewicz M (2013) The production of ginsenosides in hairy root cultures of American ginseng, Panax quinquefolium L. and their antimicrobial activity. In Vitro Cell Dev Biol Plant 49:24–29

    Article  CAS  PubMed  Google Scholar 

  117. Shoji T, Hashimoto T (2013) Jasmonate-responsive transcription factors: new tools for metabolic engineering and gene discovery. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer-Verlag, Berlin

    Google Scholar 

  118. Watjanatepin N, Wong-Satiean W (2014) The design and construction of the PV-wind autonomous system for greenhouse plantations in Central Thailand. Int J Environ Chem Ecol Geol Geophys Eng 8:884–888

    Google Scholar 

  119. Jethva KR, Sharan G (2016) Assessment of environment control in arid area greenhouse coupled with earth tube heat exchanger. Curr World Environ 11:243–250

    Article  Google Scholar 

  120. Ferreira LT, de Araújo Silva MM, Ulisses C et al (2017) Using led lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effects on redox metabolism during acclimatization. Plant Cell Tissue Org Cult 128:211–221

    Article  CAS  Google Scholar 

  121. Kaur A, Sandhu JS (2015) High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spindle leaf roll segments: cost analysis for Agri-business industry. Plant Cell Tissue Org Cult 120:339–350

    Article  CAS  Google Scholar 

  122. Liu Y, Sun G, Zhong Z et al (2016) Overexpression of AtEDT1 promotes root elongation and affects medicinal secondary metabolite biosynthesis in roots of transgenic Salvia miltiorrhiza. Protoplasma 254:1617–1625. https://doi.org/10.1007/s00709-016-1045-0

    Article  PubMed  CAS  Google Scholar 

  123. Yue W, Ming Q-L, Lin B et al (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. J Crit Rev Biotechnol 36:215–232

    Article  CAS  Google Scholar 

  124. Shukla MR, Singh AS, Piunno K et al (2017) Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Methods 13:6. https://doi.org/10.1186/s13007-017-0156-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

JCC thanks CNPQ for the research fellowship No. 304174/2015-7.

Contribution Statements

LTSG contributed writing item 2.4 Bioreactors Systems to Reduce the Cost of Micropropagated Plantlets. JATS contributed writing items 2.1 LEDs, CCFLs, and Laser Light for Tissue Culture and 3.2 The Use of Micropropagation for Secondary Metabolite Production and with final revision of all the text. JCC contributed writing all other items in the chapter and final revision of the text.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cardoso, J.C., Sheng Gerald, L.T., Teixeira da Silva, J.A. (2018). Micropropagation in the Twenty-First Century. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics