Skip to main content

Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture

  • Protocol
  • First Online:
Epithelial Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1817))

Abstract

This chapter focuses on the culture of primary human cells from the salivary glands, typically parotid but also submandibular, where specialized acinar cells produce most of the components found in saliva and the intercalated ducts followed by striated ducts transport saliva to the oral cavity. Compared to many other epithelial cells, the zymogen-filled salivary acinar cells are very fragile, hence specialized techniques are needed to isolate and culture them. To reestablish the function of implantable 3D reassembled glands using tissue engineering approaches, it is critical to culture these cells in human-based matrices that permit them to move, reassemble, interconnect, and establish proper polarity by producing a basement membrane. Our team is working to develop a biologically based, implantable salivary gland replacement tissue for head and neck cancer patients suffering from post-radiation xerostomia using a “bottom up” reassembly paradigm. We use specialized extracellular matrix and growth factor supplemented hyaluronate hydrogels to promote reassembly of human salivary stem/progenitor cells (hS/PCs) isolated after surgical resection, a method we describe in this chapter. Cell-specific biomarkers are used to track the formation of the three major epithelial cell types comprising the salivary gland: acinar, ductal, and myoepithelial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dirix P, Nuyts S, Van den Bogaert W (2006) Radiation-induced xerostomia in patients with head and neck cancer. Cancer 107(11):2525–2534

    Article  PubMed  Google Scholar 

  2. Deng J, Jackson L, Epstein JB, Migliorati CA, Murphy BA (2015) Dental demineralization and caries in patients with head and neck cancer. Oral Oncol 51(9):824–831

    Article  PubMed  Google Scholar 

  3. Jensen SB, Vissink A (2014) Salivary gland dysfunction and xerostomia in Sjogren’s syndrome. Oral Maxillofac Surg Clin North Am 26(1):35–53

    Article  PubMed  Google Scholar 

  4. Schubert MM, Izutsu KT (1987) Latrogenic causes of salivary gland dysfunction. J Dent Res 66:Spec No: 680–688

    Article  Google Scholar 

  5. Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko K-H, Jiao Z, Chan VS-F, Lau CS, Cao X, Lu L (2015) Th17 cells play a critical role in the development of experimental Sjögren's syndrome. Ann Rheum Dis 74(6):1302

    Article  PubMed  CAS  Google Scholar 

  6. Sullivan CA, Haddad RI, Tishler RB, Mahadevan A, Krane JF (2005) Chemoradiation-induced cell loss in human submandibular glands. Laryngoscope 115(6):958–964

    Article  PubMed  Google Scholar 

  7. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Menko AS, Kreidberg JA, Ryan TT, Van Bockstaele E, Kukuruzinska MA (2001) Loss of α3β1 integrin function results in an altered differentiation program in the mouse submandibular gland. Dev Dyn 220(4):337–349

    Article  PubMed  CAS  Google Scholar 

  9. Bryant David M, Roignot J, Datta A, Overeem Arend W, Kim M, Yu W, Peng X, Eastburn Dennis J, Ewald Andrew J, Werb Z, Mostov Keith E (2014) A molecular switch for the orientation of epithelial cell polarization. Dev Cell 31(2):171–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Akhtar N, Streuli CH (2013) An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 15(1):17–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schittny JC, Yurchenco PD (1989) Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol 1(5):983–988

    Article  CAS  PubMed  Google Scholar 

  12. Rizzolo LJ (1991) Basement membrane stimulates the polarized distribution of integrins but not the Na,K-ATPase in the retinal pigment epithelium. Cell Regul 2(11):939–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Salas PJI, Ponce MI, Brignoni M, Rodriguez ML (1992) Attachment of Madin-Darby canine kidney cells to extracellular matrix: role of a laminin binding protein related to the 37/67 kDa laminin receptor in the development of plasma membrane polarization. Biol Cell 75(Suppl C):197–210

    PubMed  CAS  Google Scholar 

  14. Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A (2012) α1- and α5-containing laminins regulate the development of bile ducts via β1 integrin signals. J Biol Chem 287(34):28586–28597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lafrenie RM, Yamada KM (1998) Integrins and matrix molecules in salivary gland cell adhesion, Signaling, and gene expression. Ann N Y Acad Sci 842(1):42–48

    Article  CAS  PubMed  Google Scholar 

  16. Seta N, Okazaki Y, Izumi K, Miyazaki H, Kato T, Kuwana M (2012) Fibronectin binding is required for acquisition of mesenchymal/endothelial differentiation potential in human circulating monocytes. Clin Dev Immunol 2012:9

    Article  CAS  Google Scholar 

  17. Chen QK, Lee K, Radisky DC, Nelson CM (2013) Extracellular matrix proteins regulate epithelial–mesenchymal transition in mammary epithelial cells. Differentiation 86(3):126–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Srinivasan PP, Patel VN, Liu S, Harrington DA, Hoffman MP, Jia X, Witt RL, Farach-Carson MC, Pradhan-Bhatt S (2017) Primary salivary human stem/progenitor cells undergo microenvironment-driven acinar-like differentiation in hyaluronate hydrogel culture. Stem Cells Transl Med 6(1):110–120

    Article  CAS  PubMed  Google Scholar 

  19. Nagler RM, Baum BJ (2003) Prophylactic treatment reduces the severity of xerostomia following radiation therapy for oral cavity cancer. Arch Otolaryngol Head Neck Surg 129(2):247–250

    Article  PubMed  Google Scholar 

  20. Tran SD, Redman RS, Barrett AJ, Pavletic SZ, Key S, Liu Y, Carpenter A, Nguyen HM, Sumita Y, Baum BJ, Pillemer SR, Mezey E (2011) Microchimerism in salivary glands after blood- and marrow-derived stem cell transplantation. Biol Blood Marrow Transplant 17(3):429–433

    Article  PubMed  Google Scholar 

  21. Vitolo JM, Baum BJ (2002) The use of gene transfer for the protection and repair of salivary glands. Oral Dis 8(4):183–191

    Article  PubMed  CAS  Google Scholar 

  22. Baum BJ, Tran SD (2006) Synergy between genetic and tissue engineering: creating an artificial salivary gland. Periodontology 2000 41(1):218–223

    Article  PubMed  Google Scholar 

  23. Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E, Swaim WD, Gerstenhaber J, Bryant J, Zheng C, Goldsmith CM, Kok M, Wellner R, Baum BJ (2005) Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue Eng 11(1–2):172–181

    Article  PubMed  CAS  Google Scholar 

  24. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (δEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Williams GM, Gunn JM (1974) Long-term cell culture of adult rat liver epithelial cells. Exp Cell Res 89(1):139–142

    Article  PubMed  CAS  Google Scholar 

  26. Francis GL (2010) Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62(1):1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pradhan S, Zhang C, Jia X, Carson DD, Witt RL, Farach-Carson MC (2009) Perlecan domain IV peptide stimulates salivary gland cell assembly. In Vitro Tissue Eng A 15(11):3309–3320

    Article  CAS  Google Scholar 

  28. Jamieson WRE, Lewis CTP, Sakwa MP, Cooley DA, Kshettry VR, Jones KW, David TE, Sullivan JA, Fradet GJ, Bach DS (2011) St Jude Medical Epic porcine bioprosthesis: results of the regulatory evaluation. J Thorac Cardiovasc Surg 141(6):1449–1454.e1442

    Article  PubMed  Google Scholar 

  29. Chang CW, Petrie T, Clark A, Lin X, Sondergaard CS, Griffiths LG (2016) Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications. PLoS One 11(4):e0153412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Benadiva CA, Kuczynski-Brown B, maguire TG, Mastroianni L, Flickinger GL (1989) Bovine serum albumin (BSA) can replace patient serum as a protein source in an in vitro fertilization (IVF) program. J In Vitro Fert Embryo Transf 6(3):164–167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Farach-Carson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, D., Chapela, P., Farach-Carson, M.C. (2018). Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture. In: Baratta, M. (eds) Epithelial Cell Culture. Methods in Molecular Biology, vol 1817. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8600-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8600-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8599-9

  • Online ISBN: 978-1-4939-8600-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics