Skip to main content

A Hybrid Virtual Screening Protocol Based on Binding Mode Similarity

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

In structure-based virtual screening (SBVS), a scoring function is usually applied to rank a database of docked compounds. Docking programs are often successful in reproducing experimental binding modes; however, the estimation of binding affinity still is the Achilles’ heel of docking. The integration of SB and ligand-based (LB) methods is considered a promising strategy to increase hit rates in VS. Herein, we describe a hybrid protocol that is based on the assessment of binding mode similarity between docked compounds and a bound reference ligand. In this context, both experimental and computationally modeled poses have been successfully used as references for three-dimensional (3D) similarity calculations. In this chapter, the methods applied in recent validation studies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heikamp K, Bajorath J (2013) The future of virtual compound screening. Chem Biol Drug Des 81:33–40. https://doi.org/10.1111/cbdd.12054

    Article  CAS  PubMed  Google Scholar 

  2. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20:2839–2860. https://doi.org/10.2174/09298673113209990001

    Article  CAS  PubMed  Google Scholar 

  3. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949. https://doi.org/10.1038/nrd1549

    Article  CAS  PubMed  Google Scholar 

  4. Irwin JJ, Shoichet BK (2016) Docking screens for novel ligands conferring new biology. J Med Chem 59:4103–4120. https://doi.org/10.1021/acs.jmedchem.5b02008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gathiaka S, Liu S, Chiu M et al (2016) D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions. J Comput Aided Mol Des 30:651–668. https://doi.org/10.1007/s10822-016-9946-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ripphausen P, Nisius B, Bajorath J (2011) State-of-the-art in ligand-based virtual screening. Drug Discov Today 16:372–376. https://doi.org/10.1016/j.drudis.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  7. Drwal MN, Griffith R (2013) Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol 10:e395–e401. https://doi.org/10.1016/j.ddtec.2013.02.002

    Article  PubMed  Google Scholar 

  8. Anighoro A, Bajorath J (2016) Three-dimensional similarity in molecular docking: prioritizing ligand poses on the basis of experimental binding modes. J Chem Inf Model 56:580–587. https://doi.org/10.1021/acs.jcim.5b00745

    Article  CAS  PubMed  Google Scholar 

  9. Anighoro A, Bajorath J (2016) Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor. J Comput Aided Mol Des 30:447–456. https://doi.org/10.1007/s10822-016-9918-z

    Article  CAS  PubMed  Google Scholar 

  10. Anighoro A, Bajorath J (2017) Compound ranking on the basis of fuzzy 3D similarity improves the performance of docking into homology models of G-protein coupled receptors. ACS Omega 2:2583–2592. https://doi.org/10.1021/acsomega.7b00330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peltason L, Bajorath J (2007) Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chem Biol 14:489–497. https://doi.org/10.1016/j.chembiol.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  12. Molecular Operating Environment (MOE), 2014.09; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, 2014.

    Google Scholar 

  13. Klon AE, Héroux A, Ross LJ et al (2002) Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution. J Mol Biol 320:677–693. https://doi.org/10.1016/S0022-2836(02)00469-2

    Article  CAS  PubMed  Google Scholar 

  14. Kauppi B, Jakob C, Färnegårdh M et al (2003) The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 278:22748–22754. https://doi.org/10.1074/jbc.M212711200

    Article  CAS  PubMed  Google Scholar 

  15. Shen C-H, Wang Y-F, Kovalevsky AY et al (2010) Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters. FEBS J 277:3699–3714. https://doi.org/10.1111/j.1742-4658.2010.07771.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyamoto N, Sakai N, Hirayama T et al (2013) Discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor. Bioorg Med Chem 21:2333–2345. https://doi.org/10.1016/j.bmc.2013.01.074

    Article  CAS  PubMed  Google Scholar 

  17. Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236. https://doi.org/10.1126/science.1219218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265. https://doi.org/10.1126/science.1150577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bienert S, Waterhouse A, de Beer TAP et al (2017) The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res 45:D313–D319. https://doi.org/10.1093/nar/gkw1132

    Article  CAS  PubMed  Google Scholar 

  21. Isberg V, Mordalski S, Munk C et al (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44:D356–D364. https://doi.org/10.1093/nar/gkv1178

    Article  CAS  PubMed  Google Scholar 

  22. Bauer MR, Ibrahim TM, Vogel SM, Boeckler FM (2013) Evaluation and optimization of virtual screening workflows with DEKOIS 2.0--a public library of challenging docking benchmark sets. J Chem Inf Model 53:1447–1462. https://doi.org/10.1021/ci400115b

    Article  CAS  PubMed  Google Scholar 

  23. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801. https://doi.org/10.1021/jm0608356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  26. Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201. https://doi.org/10.1093/nar/gkl999

    Article  CAS  PubMed  Google Scholar 

  27. Southan C, Sharman JL, Benson HE et al (2016) The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44:D1054–D1068. https://doi.org/10.1093/nar/gkv1037

    Article  CAS  PubMed  Google Scholar 

  28. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  29. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hu Y, Furtmann N, Gütschow M, Bajorath J (2012) Systematic identification and classification of three-dimensional activity cliffs. J Chem Inf Model 52:1490–1498. https://doi.org/10.1021/ci300158v

    Article  CAS  PubMed  Google Scholar 

  31. Bender A, Glen RC (2005) A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication. J Chem Inf Model 45:1369–1375. https://doi.org/10.1021/ci0500177

    Article  CAS  PubMed  Google Scholar 

  32. Lätti S, Niinivehmas S, Pentikäinen OT (2016) Rocker: open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization. J Chem 8:45. https://doi.org/10.1186/s13321-016-0158-y

    Article  Google Scholar 

Download references

Acknowledgment

We thank OpenEye Scientific Software, Inc., for a free academic license of the OpenEye Toolkit and Chemical Computing Group, Inc., for academic teaching licenses of the Molecular Operating Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anighoro, A., Bajorath, J. (2018). A Hybrid Virtual Screening Protocol Based on Binding Mode Similarity. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics