Skip to main content

Gene Expression and Transcription Factor Binding Tests Using Mutated-Promoter Reporter Lines

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

To control the expression of their target genes, plant transcription factors bind to specific DNA sequences (called cis-elements) adjacent to the genes they regulate, thereby promoting or blocking the recruitment of RNA polymerase. Functional analysis of cis-elements is therefore essential for understanding transcriptional regulation, which underlies developmental programs and environmental responses. Using transgenic promoters containing mutations in their cis-elements, the roles of cis-elements in both transcriptional activity and transcription factor binding can be analyzed. To generate mutated promoters, site-directed mutagenesis is used. Site-directed mutagenesis is an in vitro method that confers the desired mutation in a target through performing PCR of native DNA using a mutated oligonucleotide primer. In this chapter, we describe detailed protocols for cloning of promoter regions, PCR-based site-directed mutagenesis, the generation of Arabidopsis transgenic lines, and expression analysis. In addition, we describe an in vivo method to test the binding of transcription factors to promoters with wild-type or mutated cis-elements. This protocol mainly focuses on the use of transgenic lines generated by site-directed mutagenesis, but it can readily be adapted for use with lines generated by CRISPR/Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carey M, Smale ST (2000) Transcriptional regulation in eukaryotes: concepts, straetgies and techniques. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY

    Google Scholar 

  2. Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 7:29–59

    Article  CAS  PubMed  Google Scholar 

  3. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ouwerkerk PB, Meijer AH (2001) Yeast one-hybrid screeining for DNA-protein interactions. Curr Protoc Mol Biol Chapter 12:Unit 12.12

    Google Scholar 

  5. Yamaguchi N, Wu MF, Winter CM, Kanno Y, Yamaguchi A, Seo M, Wagner D (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–641

    Article  CAS  PubMed  Google Scholar 

  6. Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    Article  CAS  PubMed  Google Scholar 

  7. Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24:271–282

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi N, Winter CM, Wu MF, Kwon CS, William DA, Wagner D (2014) PROTOCOLS: chromatin immunoprecipitation from Arabidopsis tissues. Arabidopsis Book 12:e0170

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad U S A 82:488–492

    Article  CAS  Google Scholar 

  10. Handa P, Thanedar S, Varshney U (2001) Rapid and reliable site-derected mutagenesis using Kunkel’s approach. Methods Mol Biol 182:1–6

    Google Scholar 

  11. Andrews CA, Lesley SA (2002) Site-directed mutagenesis using altered-lactamase specificity. Methods Mol Biol 182:7–18

    PubMed  CAS  Google Scholar 

  12. Li F, Mullins JI (2002) Site-directed mutagenesis facilitated by Dpn I selection on hemimethylated DNA. Methods Mol Biol 182:19–28

    PubMed  CAS  Google Scholar 

  13. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    Article  CAS  Google Scholar 

  14. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637

    Article  CAS  PubMed  Google Scholar 

  15. Blazquez MA (2002) Quantitative GUS activity assays. In: Weigel D, Glazebrook J (eds) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 249–252

    Google Scholar 

  16. Bomblies K (2001) Whole-mount GUS staining. In: Weigel D, Glazebrook J (eds) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 243–248

    Google Scholar 

  17. Jefferson RA, Lavamagh TA, Bevan MW (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mudunkothge J, Krizek B (2014) GUS reporter system in flower development studies. Methods Mol Biol 1110:295–304

    Article  CAS  PubMed  Google Scholar 

  19. Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  CAS  Google Scholar 

  20. Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE, Parcy F, Jensen ST, Li H, Wagner D (2011) LEAFY target genes reveal floral regulatory logic, cis motifs and a link to biotic stimulus response. Dev Cell 20:430–443

    Article  CAS  PubMed  Google Scholar 

  21. Moyround E, Mingiet EG, Ott F, Yant L, Pose D, Monniaux M, Blanchet S, Bastien O, Thevenon E, Weigel D, Schmid M, Parcy F (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23:1293–1306

    Article  CAS  Google Scholar 

  22. Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  CAS  PubMed  Google Scholar 

  23. Wuest SE, OMaoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad U S A 109:13452–13457

    Article  Google Scholar 

  24. OMaoileidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwasniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F (2013) Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25:2483–2503

    Google Scholar 

  25. Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang W, Zhang T, Wu Y, Jiang J (2012) Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24:2719–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JY, Baum SF, Alvarez J, Patel A, Chitwood DH, Bowman JL (2005) Activation of CRABS CLAW in the nectaries and carpels of Arabidiopsis. Plant Cell 17:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) cis-regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22:1425–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berns M, Nordstorm K, Cremer F, Toth R, Hardtke M, Simon S, Klasen J, Burstel I, Coupland G (2014) Evening expression of Arabidopsis GIGANTEA is controlled by conbiatorial interactions among evolutionarily conserved regulatory motifs. Plant Cell 26:3999–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito T, Wellmer F, Yu H, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 15:356–360

    Article  CAS  Google Scholar 

  31. Liu C, Wei Z, Teo N, Bo Y, Song S, Xi W, Yang X, Yin Z, Yu H (2013) A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 24:612–622

    Article  CAS  PubMed  Google Scholar 

  32. Serrano-Mislata A, Fernandez-Nohales P, Domenech MJ, Hanzawa Y, Bradley D, Madueno F (2016) Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity. Development 143:3315–3327

    Article  CAS  PubMed  Google Scholar 

  33. Endo M, Noshizawa-Yokoi A, Toki S (2016) Targeted mutagenesis in Rice using TALENs and the CRISPR/Cas9 system. Methods Mol Biol 1469:123–135

    Article  CAS  PubMed  Google Scholar 

  34. Raitskin O, Patron NJ (2016) Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotechnol 37:69–75

    Article  CAS  PubMed  Google Scholar 

  35. Tang W, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas DF, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9:1088–1091

    Article  CAS  PubMed  Google Scholar 

  36. Haeussler M, Concordet JP (2016) Genome editing with CRISPR-Cas9: can it get any better? J Genet Genomics 43:239–250

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gao Y, Zhao Y (2014) Specific and heritable gene editing in Arabidopsis. Proc Natl Acad Sci U S A 111:4357–4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noshizawa-Yokoi A, Saika S, Toki S (2016) Seamless genome editing in Rice via gene targeting and precise marker elimination. Methods Mol Biol 1469:137–146

    Article  CAS  Google Scholar 

  40. Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K (2015) Proc Natl Acad Sci U S A 112:E901–E910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  42. Wu MF, Sang Y, Bezhani S, Yamaguchi N, Han SK, Li Z, Su Y, Slewinski TL, Wagner D (2012) SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc Natl Acad Sci U S A 109:3576–3581

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D (2015) Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. e-Life 4:e09269

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Japan Science and Technology Agency ‘Precursory Research for Embryonic Science and Technology’ to N.Y. and A.N-Y; grants to N.Y. from the JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas (no. 16H01468), the NAIST foundation, the Sumitomo Foundation and the Takeda Science Foundation; the Cross-ministerial Strategic Innovation Promotion Program to A.N-Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutoshi Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nishizawa-Yokoi, A., Yamaguchi, N. (2018). Gene Expression and Transcription Factor Binding Tests Using Mutated-Promoter Reporter Lines. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics