Skip to main content

Generation and Analysis of Striated Muscle Selective LINC Complex Protein Mutant Mice

  • Protocol
  • First Online:
The LINC Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1840))

Abstract

The linker of nucleoskeleton and cytoskeleton (LINC) complex mediates intracellular cross talk between the nucleus and the cytoplasm. In striated muscle, the LINC complex provides structural support to the myocyte nucleus and plays an essential role in regulating gene expression and mechanotransduction. A wide range of cardiac and skeletal myopathies have been linked to mutations in LINC complex proteins. Studies utilizing tissue-specific knockout and mutant mouse models have revealed important insights into the roles of the LINC complex in striated muscle. In this chapter, we describe several feasible approaches for generating striated muscle-specific gene knockout and mutant mouse models to study LINC complex protein function in cardiac and skeletal muscle. The experimental procedures used for phenotyping and analysis of LINC complex knockout mice are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82(1–2):3–21

    Article  PubMed  CAS  Google Scholar 

  2. van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee I, Zhang J, Moore-Morris T et al (2014) Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet 10(2):e1004114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Chapman MA, Zhang J, Banerjee I et al (2014) Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 23(22):5879–5892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Stroud MJ, Feng W, Zhang J et al (2017) Nesprin 1alpha2 is essential for mouse postnatal viability and nuclear positioning in skeletal muscle. J Cell Biol 216(7):1915–1924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Zhang J, Felder A, Liu Y et al (2010) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19(2):329–341

    Article  PubMed  CAS  Google Scholar 

  7. Aida T, Chiyo K, Usami T et al (2015) Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol 16:87

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Hashimoto M, Yamashita Y, Takemoto T (2016) Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev Biol 418(1):1–9

    Article  PubMed  CAS  Google Scholar 

  9. Ma X, Chen C, Veevers J et al (2017) CRISPR/Cas9-mediated gene manipulation to create single-amino-acid-substituted and floxed mice with a cloning-free method. Sci Rep 7:42244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Nakagawa Y, Sakuma T, Nishimichi N et al (2016) Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open 5(8):1142–1148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Rajewsky K, Gu H, Kuhn R et al (1996) Conditional gene targeting. J Clin Invest 98(3):600–603

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kuhn R, Schwenk F, Aguet M et al (1995) Inducible gene targeting in mice. Science 269(5229):1427–1429

    Article  PubMed  CAS  Google Scholar 

  14. Kilby NJ, Snaith MR, Murray JA (1993) Site-specific recombinases: tools for genome engineering. Trends Genet 9(12):413–421

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez CI, Buchholz F, Galloway J et al (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140

    Article  PubMed  CAS  Google Scholar 

  16. Liang X, Zhou Q, Li X et al (2005) PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes. Mol Cell Biol 25(8):3056–3062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Bione S, Maestrini E, Rivella S et al (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8(4):323–327

    Article  PubMed  CAS  Google Scholar 

  21. Bione S, Small K, Aksmanovic VM et al (1995) Identification of new mutations in the Emery-Dreifuss muscular dystrophy gene and evidence for genetic heterogeneity of the disease. Hum Mol Genet 4(10):1859–1863

    Article  CAS  PubMed  Google Scholar 

  22. Christensen AH, Andersen CB, Tybjaerg-Hansen A et al (2011) Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet 80(3):256–264

    Article  CAS  PubMed  Google Scholar 

  23. Haque F, Mazzeo D, Patel JT et al (2010) Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 285(5):3487–3498

    Article  PubMed  CAS  Google Scholar 

  24. Hodgkinson KA, Connors SP, Merner N et al (2013) The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin Genet 83(4):321–331

    Article  CAS  PubMed  Google Scholar 

  25. Malhotra R, Mason PK (2009) Lamin A/C deficiency as a cause of familial dilated cardiomyopathy. Curr Opin Cardiol 24(3):203–208

    Article  PubMed  Google Scholar 

  26. Merner ND, Hodgkinson KA, Haywood AF et al (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82(4):809–821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Puckelwartz MJ, Kessler EJ, Kim G et al (2010) Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 48(4):600–608

    Article  CAS  PubMed  Google Scholar 

  28. Yamada T, Kobayashi T (1996) A novel emerin mutation in a Japanese patient with Emery-Dreifuss muscular dystrophy. Hum Genet 97(5):693–694

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Bethmann C, Worth NF et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16(23):2816–2833

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Z, Stroud MJ, Zhang J et al (2015) Normalization of Naxos plakoglobin levels restores cardiac function in mice. J Clin Invest 125(4):1708–1712

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sheikh F, Ouyang K, Campbell SG et al (2012) Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest 122(4):1209–1221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Fang X, Bogomolovas J, Wu T et al (2017) Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. J Clin Invest 127(8):3189–3200

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davis J, Maillet M, Miano JM et al (2012) Lost in transgenesis: a user’s guide for genetically manipulating the mouse in cardiac research. Circ Res 111(6):761–777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Abel ED, Kaulbach HC, Tian R et al (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104(12):1703–1714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Agah R, Frenkel PA, French BA et al (1997) Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest 100(1):169–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Buerger A, Rozhitskaya O, Sherwood MC et al (2006) Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail 12(5):392–398

    Article  PubMed  CAS  Google Scholar 

  37. McFadden DG, Barbosa AC, Richardson JA et al (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132(1):189–201

    Article  PubMed  CAS  Google Scholar 

  38. Stanley EG, Biben C, Elefanty A et al (2002) Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3'UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int J Dev Biol 46(4):431–439

    PubMed  CAS  Google Scholar 

  39. Moses KA, DeMayo F, Braun RM et al (2001) Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis 31(4):176–180

    Article  PubMed  CAS  Google Scholar 

  40. Jay PY, Harris BS, Maguire CT et al (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113(8):1130–1137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Biben C, Weber R, Kesteven S et al (2000) Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 87(10):888–895

    Article  PubMed  CAS  Google Scholar 

  42. Jiao K, Kulessa H, Tompkins K et al (2003) An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev 17(19):2362–2367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Hirai M, Arita Y, McGlade CJ et al (2017) Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest 127(2):569–582

    Article  PubMed  PubMed Central  Google Scholar 

  44. Breckenridge R, Kotecha S, Towers N et al (2007) Pan-myocardial expression of Cre recombinase throughout mouse development. Genesis 45(3):135–144

    Article  PubMed  CAS  Google Scholar 

  45. Chen J, Kubalak SW, Chien KR (1998) Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 125(10):1943–1949

    PubMed  CAS  Google Scholar 

  46. Minamisawa S, Gu Y, Ross J Jr et al (1999) A post-transcriptional compensatory pathway in heterozygous ventricular myosin light chain 2-deficient mice results in lack of gene dosage effect during normal cardiac growth or hypertrophy. J Biol Chem 274(15):10066–10070

    Article  PubMed  CAS  Google Scholar 

  47. Shai SY, Harpf AE, Babbitt CJ et al (2002) Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90(4):458–464

    Article  PubMed  CAS  Google Scholar 

  48. Sohal DS, Nghiem M, Crackower MA et al (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 89(1):20–25

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Z, Mu Y, Veevers J et al (2016) Postnatal loss of Kindlin-2 leads to progressive heart failure. Circ Heart Fail 9(8):e003129

    Article  PubMed  CAS  Google Scholar 

  50. Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624

    Article  PubMed  CAS  Google Scholar 

  51. Lexow J, Poggioli T, Sarathchandra P et al (2013) Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver. Dis Model Mech 6(6):1470–1476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Bersell K, Choudhury S, Mollova M et al (2013) Moderate and high amounts of tamoxifen in alphaMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis Model Mech 6(6):1459–1469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Koitabashi N, Bedja D, Zaiman AL et al (2009) Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models. Circ Res 105(1):12–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Vogt MA, Chourbaji S, Brandwein C et al (2008) Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping. Exp Neurol 211(1):25–33

    Article  PubMed  CAS  Google Scholar 

  55. Yan J, Sultana N, al ZL (2015) Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies. Genesis 53(6):377–386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Wu B, Zhou B, Wang Y et al (2010) Inducible cardiomyocyte-specific gene disruption directed by the rat Tnnt2 promoter in the mouse. Genesis 48(1):63–72

    PubMed Central  PubMed  Google Scholar 

  57. Miniou P, Tiziano D, Frugier T et al (1999) Gene targeting restricted to mouse striated muscle lineage. Nucleic Acids Res 27(19):e27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. McCarthy JJ, Srikuea R, Kirby TJ et al (2012) Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting. Skelet Muscle 2(1):8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Rao P, Monks DA (2009) A tetracycline-inducible and skeletal muscle-specific Cre recombinase transgenic mouse. Dev Neurobiol 69(6):401–406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Li S, Czubryt MP, McAnally J et al (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 102(4):1082–1087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Southard S, Low S, Li L et al (2014) A series of Cre-ER(T2) drivers for manipulation of the skeletal muscle lineage. Genesis 52(8):759–770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Marin TM, Keith K, Davies B et al (2011) Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 121(3):1026–1043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–3308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Melton DW (2002) Gene-targeting strategies. Methods Mol Biol 180:151–173

    CAS  PubMed  Google Scholar 

  65. Yen ST, Zhang M, Deng JM et al (2014) Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 393(1):3–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Parsons SA, Millay DP, Wilkins BJ et al (2004) Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279(25):26192–26200

    Article  CAS  PubMed  Google Scholar 

  67. Randles KN, Lam le T, Sewry CA et al (2010) Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development. Dev Dyn 239(3):998–1009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Huber MD, Guan T, Gerace L (2009) Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol Cell Biol 29(21):5718–5728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Matthew J Stroud, Xi Fang, Jianlin Zhang et al (2018) Luma is not essential for murine cardiac development and function, Cardiovascular Research 114(3):378–388. https://doi.org/10.1093/cvr/cvx205PMID:29040414

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stroud, M.J., Fang, X., Veevers, J., Chen, J. (2018). Generation and Analysis of Striated Muscle Selective LINC Complex Protein Mutant Mice. In: Gundersen, G., Worman, H. (eds) The LINC Complex. Methods in Molecular Biology, vol 1840. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8691-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8691-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8690-3

  • Online ISBN: 978-1-4939-8691-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics