Skip to main content

A Simple Method for Detecting Phosphorylation of Proteins by Using Zn2+-Phos-Tag SDS-PAGE at Neutral pH

  • Protocol
  • First Online:
Protein Gel Detection and Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1853))

Abstract

Zn2+-Phos-tag SDS-PAGE at neutral pH is a novel and simple method for analysis and separation of phosphorylated forms of proteins from their nonphosphorylated forms. This technique exploits the use of a dinuclear metal complex of 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-olate which acts as a phosphate-binding tag, having the capacity to incorporate two zinc metal ions which could then bind to phosphomonoester dianion as a bridging ligand. The acrylamide-pendant Zn2+-Phos-tag provides a phosphate affinity on simple SDS-PAGE gel for detection of mobility shift in phosphorylated proteins as compared to their nonphosphorylated forms. The technique is based on the principle that Zn2+-Phos-tag bound phosphorylated protein has a slower migration rate on the gel as compared to unbound nonphosphorylated proteins and are thus separated on the gel. Zn2+-Phos-tag SDS-PAGE was developed by improving the Mn2+-Phos-tag SDS-PAGE as the latter was unsuccessful in showing a mobility shift in some proteins such as Tau and pepsin. Additionally, the use of neutral pH instead of alkaline pH gives almost about 6 months of stability to the gels as compared to gels in alkaline pH which were quite unstable. Therefore, this Zn2+-Phos-tag SDS-PAGE method is simple, reliable and convenient for phosphate-affinity SDS-PAGE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishi H et al (2013) Regulation of protein–protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol BioSyst 9(7):1620–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raggiaschi R et al (2006) Detection of phosphorylation patterns in rat cortical neurons by combining phosphatase treatment and DIGE technology. Proteomics 6(3):748–756

    Article  CAS  PubMed  Google Scholar 

  3. Hegenauer J, Ripley L, Nace G (1977) Staining acidic phosphoproteins (phosvitin) in electrophoretic gels. Anal Biochem 78(1):308–311

    Article  CAS  PubMed  Google Scholar 

  4. Debruyne I (1983) Staining of alkali-labile phosphoproteins and alkaline phosphatases on polyacrylamide gels. Anal Biochem 133(1):110–115

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Giese RW (1995) Phosphate-specific fluorescence labeling of pepsin by BO-IMI. Anal Biochem 230(2):329–332

    Article  CAS  PubMed  Google Scholar 

  6. Kinoshita E et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5(4):749–757

    Article  CAS  PubMed  Google Scholar 

  7. Kinoshita E et al (2009) Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9(16):4098–4101

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita-Kikuta E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6(2):356–366

    Article  CAS  PubMed  Google Scholar 

  9. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4(10):1513–1521

    Article  CAS  PubMed  Google Scholar 

  10. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11(2):319–323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, G. (2018). A Simple Method for Detecting Phosphorylation of Proteins by Using Zn2+-Phos-Tag SDS-PAGE at Neutral pH. In: Kurien, B., Scofield, R. (eds) Protein Gel Detection and Imaging. Methods in Molecular Biology, vol 1853. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8745-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8745-0_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8744-3

  • Online ISBN: 978-1-4939-8745-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics