Skip to main content

Methionine Gamma Lyase from Clostridium sporogenes Increases the Anticancer Efficacy of Doxorubicin on A549 Cancer Cells In Vitro and Human Cancer Xenografts

  • Protocol
  • First Online:
Methionine Dependence of Cancer and Aging

Abstract

The anticancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer cells in vitro and in vivo. Doxorubicin (DOX) and MGL were more effective on A549 human lung-cancer growth inhibition than either agent alone in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Sayed AS (2010) Microbial L-methioninase: production, molecular characterization, and therapeutic applications. Appl Microbiol Biotechnol 86:445–467

    Article  CAS  Google Scholar 

  2. Cellarier E, Durando X, Vasson MP et al (2003) Methionine dependency and cancer treatment. Cancer Treat Rev 29:488–489

    Article  Google Scholar 

  3. Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31

    Article  CAS  Google Scholar 

  4. Kreis W, Hession C (1973) Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor. Cancer Res 33:1866–1869

    CAS  PubMed  Google Scholar 

  5. Yoshioka T, Wada T, Uchida N et al (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil and safety of recombinant methioninase. Cancer Res 58:2583–2587

    CAS  PubMed  Google Scholar 

  6. Tan Y, Sun X, Xu M et al (1999) Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5:2157–2163

    CAS  PubMed  Google Scholar 

  7. Kokkinakis DM, Wick JB, Zhou Q-X (2002) Metabolic response of normal and malignant tissue to acute and chronic methionine stress in athymic mice bearing human glial tumor xenografts. Chem Res Toxicol 15:1472–1479

    Article  CAS  Google Scholar 

  8. Murakami T, Li S, Han Q et al (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638

    PubMed  PubMed Central  Google Scholar 

  9. Kawaguchi K, Igarashi K, Li S et al (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525

    PubMed  PubMed Central  Google Scholar 

  10. Igarashi K, Kawaguchi K, Li S et al (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173

    Article  CAS  Google Scholar 

  11. El-Sayed AS, Shouman SA, Nassrat HM (2012) Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enzym Microb Technol 51(4):200–210

    Article  CAS  Google Scholar 

  12. Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst (Bethesda) 76:629–639

    Article  CAS  Google Scholar 

  13. Kokkinakis DM, Schold SCJ, Hori H, Nobori T (1997) Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr Cancer 29:195–204

    Article  CAS  Google Scholar 

  14. Kokkinakis DM, Hoffman RM, Frenkel EP et al (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4023

    CAS  PubMed  Google Scholar 

  15. Morozova EA, Kulikova VV, Yashin DV et al (2013) Kinetic parameters and cytotoxic activity of recombinant methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. Acta Nat 5(3):92–98

    CAS  Google Scholar 

  16. Anufrieva NV, Morozova EA, Kulikova VV et al (2015) Sulfoxides, analogues of L-methionine and L-cysteine as pro-drugs against gram-positive and gram-negative bacteria. Acta Nat 7(4):128–135

    CAS  Google Scholar 

  17. Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS et al (2012) Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochem (Moscow) Suppl B Biomed Chem 6(2):123–131

    Google Scholar 

  18. Wang WT, Zhao Y, Gao JL et al (2014) Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W. T. Wang. J Intercult Ethnopharmacol 3(2):68–72

    Article  Google Scholar 

  19. Sidoruk KV, Pokrovsky VS, Borisova AA et al (2011) Creation of a producent, optimization of expression, and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bull Exp Biol Med 152(2):219–223

    Article  CAS  Google Scholar 

  20. Pokrovskaya MV, Aleksandrova SS, Pokrovsky VS et al (2015) Identification of functional regions in the Rhodospirillum rubrum L-asparaginase by site-directed mutagenesis. Mol Biotechnol 57(3):251–264

    Article  CAS  Google Scholar 

  21. Pokrovsky VS, Kazanov MD, Dyakov IN et al (2016) Comparative immunogenicity and structural analysis of epitopes of different bacterial L-asparaginases. BMC Cancer 16:89

    Article  Google Scholar 

  22. Sannikova EP, Bulushova NV, Cheperegin SE et al (2016) The modified heparin-binding L-Asparaginase of Wolinella succinogenes. Mol Biotechnol 58(8–9):528–539

    Article  CAS  Google Scholar 

  23. Pokrovsky VS, Treshalina HM, Lukasheva EV et al (2013) Enzymatic properties and anticancer activity of L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anti-Cancer Drugs 24(8):846–851

    Article  CAS  Google Scholar 

  24. Babich OO, Pokrovsky VS, Anisimova NY et al (2013) Recombinant l-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnol Appl Biochem 60(3):316–322

    Article  CAS  Google Scholar 

  25. Mecham JO, Rowitch D, Wallace CD et al (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434

    Article  CAS  Google Scholar 

  26. Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527

    Article  CAS  Google Scholar 

  27. Hoffman RM (1984) Altered methionine metabolism, DNA methylation, and oncogene expression in carcinogenesis: a review and symthesis. Biochim Biophys Acta 738:49–87

    CAS  PubMed  Google Scholar 

  28. Guo H, Herrera H, Groce A, Hoffman RM (1993) Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res 53:2479–2483

    CAS  PubMed  Google Scholar 

  29. Tisdale M, Eridani S (1981) Methionine requirement of normal and leukaemic haemopoietic cells in short term cultures. Leuk Res 5:385–394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pokrovsky, V.S. et al. (2019). Methionine Gamma Lyase from Clostridium sporogenes Increases the Anticancer Efficacy of Doxorubicin on A549 Cancer Cells In Vitro and Human Cancer Xenografts. In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics