Skip to main content

Dot Blot Analysis for Measuring Global N6-Methyladenosine Modification of RNA

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

Posttranscriptional modification of mRNAs plays an important role in establishing the functional diversity of the proteome. The m6A modification is found in many species of RNA, including tRNA, mRNA, rRNA, and long noncoding RNAs. The physiological role of m6A modification of RNA is not fully explored and is a topic of current research. It is predicted that the major effect of m6A modification of mRNAs is on its stability and/or translation. The global changes in m6A levels in total RNA or particular species of RNAs can be measured by dot blot analysis using m6A specific antibodies or using mass spectrometry following chromatographic separation. The dot blot method for detection of global m6A changes is a relatively straightforward method to quantitate m6A modification but suffers from low sensitivity when the fraction of m6A-modified RNA is small in analyzed samples. Here, we describe a modified dot blot method that is sensitive and quantitative for detecting m6A-modified RNA by adding an immunoprecipitation step to enrich for m6A-modified RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z, Flavell RA (2017) m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548(7667):338–342. https://doi.org/10.1038/nature23450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, Su Y, Kim NS, Zhu Y, Zheng L, Kim S, Wang X, Dore LC, Jin P, Regot S, Zhuang X, Canzar S, He C, Ming GL, Song H (2017) Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171(4):877–889 e817. https://doi.org/10.1016/j.cell.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, Lv J, Heng J, Ding Y, Xue Y, Lu X, Xiao W, Yang YG, Liu F (2017) m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549(7671):273–276. https://doi.org/10.1038/nature23883

    Article  CAS  PubMed  Google Scholar 

  5. Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269(26):17697–17704

    CAS  PubMed  Google Scholar 

  6. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10(2):93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  7. Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR (2012) RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet 8(6):e1002732. https://doi.org/10.1371/journal.pgen.1002732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887. https://doi.org/10.1038/nchembio.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  10. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163(4):999–1010. https://doi.org/10.1016/j.cell.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  12. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537(7620):369–373. https://doi.org/10.1038/nature19342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61(4):507–519. https://doi.org/10.1016/j.molcel.2016.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge grants from the National Institutes of Health: R01CA195077-01A1 (NW), R01CA200919-01 (NW), and 1R01 CA218008-01A1 (NW). N.W. is also supported by Research Scholar Grant from American Cancer Society (128347-RSG-15-212-01-TBG. Grant support from Elsa U Pardee Foundation is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Wajapeyee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nagarajan, A., Janostiak, R., Wajapeyee, N. (2019). Dot Blot Analysis for Measuring Global N6-Methyladenosine Modification of RNA. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics