Skip to main content

Microinjection and Micromanipulation: A Historical Perspective

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

Microinjection/micromanipulation is more than 100 years old. It is a technique that is instrumental in biomedical research and healthcare. Its longevity lies in its preciseness in mechanical retrieval, or delivery of biological materials, which in some cases is simply necessary or more effective than other retrieval/delivery means. Microinjection is favored for its straightforwardness in transferring contents from micromolecules to macromolecules and from organelles to cells. Microinjection/micromanipulation has been practiced over the century like an art form. Variations in handlings and instruments can be tolerated to a surprising degree with satisfactory outcomes. Throughout the century, microinjection developed as an indispensable tool along with the evolution of biomedical fields: from transgenics to gene targeting, from animal cloning to human infertility treatment, from nuclease-guided genetic engineering to RNA-guided genome editing (Fig. 1). The birth of the CRISPRology rejuvenated microinjection. For microinjection/micromanipulation, the second century has already begun with the early arrival of computerized instrumentation and lately of the high-throughput nanomanipulators potentially operable by artificial intelligence. As we yin-yang both systemic and precision approaches in research and medicine, microinjection will no doubt continue to find its unique place in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber M (1904) A new method of isolating microorganisms. J Kans Med Soc 4:489–494

    Google Scholar 

  2. Barber MA (1911) A technic for the inoculation of bacteria and other substances into living cells. J Infect Dis 8(3):348–360

    Article  Google Scholar 

  3. Barber MA (1914) The pipette method in the isolation of single micro-organisms and in the inoculation of substances into living cells: with a technique for dissection, staining, and other processes carried out under the higher powers of the microscope. Philippine J Sci B 9(4):307–360

    Google Scholar 

  4. Terreros DA, Grantham JJ (1982) Marshall barber and the origins of micropipette methods. Am J Phys 242(3):F293–F296

    CAS  Google Scholar 

  5. Pratt FH, Eisenberger JP (1919) The quantal phenomena in muscle: methods, with further evidence of the all-or-none principle for the skeletal fiber. Am J Phys 49(1):1–54

    Google Scholar 

  6. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  7. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  CAS  PubMed  Google Scholar 

  8. Lin TP (1996) Microinjection of mouse eggs. Science 151(3708):333–337

    Article  Google Scholar 

  9. Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233(5316):177–182

    Article  CAS  PubMed  Google Scholar 

  10. Wasserman WJ, Masui Y (1976) A cytoplasmic factor promoting oocyte maturation: its extraction and preliminary characterization. Science 191(4233):1266–1268

    Article  CAS  PubMed  Google Scholar 

  11. Heidemann SR, Kirschner MW (1975) Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol 67(1):105–117

    Article  CAS  PubMed  Google Scholar 

  12. Birchmeier C, Broek D, Wigler M (1985) Ras proteins can induce meiosis in Xenopus oocytes. Cell 43(3 Pt 2):615–621

    Article  CAS  PubMed  Google Scholar 

  13. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF (1988) Function of c-Mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335(6190):519–525

    Article  CAS  PubMed  Google Scholar 

  14. Gebauer F, Xu W, Cooper GM, Richter JD (1994) Translational control by cytoplasmic polyadenylation of c-Mos mRNA is necessary for oocyte maturation in the mouse. EMBO J 13(23):5712–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A 73(4):1260–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71(4):1250–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gordon J, Ruddle F (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214(4526):1244–1246

    Article  CAS  PubMed  Google Scholar 

  18. Costantini F, Lacy E (1981) Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294(5836):92–94

    Article  CAS  PubMed  Google Scholar 

  19. Brinster R, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27(1 Pt 2):223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77(12):7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22(2 Pt 2):479–488

    Article  CAS  PubMed  Google Scholar 

  22. Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB (1981) Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci U S A 78(10):6376–6380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300(5893):611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1983) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A 82(13):4438–4442

    Article  Google Scholar 

  25. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  26. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin FL, Sperle K, Sternberg N (1985) Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci U S A 82(5):1391–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  29. Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326(6110):295–298

    Article  CAS  PubMed  Google Scholar 

  30. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330(6148):576–578

    Article  CAS  PubMed  Google Scholar 

  31. Nagy A, Gócza E, Diaz EM, Prideaux VR, Iványi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821

    CAS  PubMed  Google Scholar 

  32. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90(18):8424–8428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Doré AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25(1):91–99

    Article  CAS  PubMed  Google Scholar 

  34. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135(7):1287–1298

    Article  CAS  PubMed  Google Scholar 

  35. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135(7):1299–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813

    Article  CAS  PubMed  Google Scholar 

  37. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs' eggs. Proc Natl Acad Sci U S A 38(5):455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182(4627):64–65

    Article  CAS  PubMed  Google Scholar 

  39. Meng L, Ely JJ, Stouffer RL, Wolf DP (1997) Rhesus monkeys produced by nuclear transfer. Biol Reprod 57(2):454–459

    Article  CAS  PubMed  Google Scholar 

  40. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M, Sun Q (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172(4):881–887

    Article  CAS  PubMed  Google Scholar 

  41. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2(8085):366

    Article  CAS  PubMed  Google Scholar 

  42. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18

    Article  CAS  PubMed  Google Scholar 

  43. Tesarik J, Mendoza C (1996) Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum Reprod 11(4):772–779

    Article  CAS  PubMed  Google Scholar 

  44. Tesarik J, Rolet F, Brami C, Sedbon E, Thorel J, Tibi C, Thébault A (1996) Spermatid injection into human oocytes. II. Clinical application in the treatment of infertility due to non-obstructive azoospermia. Hum Reprod 11(4):780–783

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka A, Nagayoshi M, Takemoto Y, Tanaka I, Kusunoki H, Watanabe S, Kuroda K, Takeda S, Ito M, Yanagimachi R (2015) Fourteen babies born after round spermatid injection into human oocytes. Proc Natl Acad Sci U S A 112(47):14629–14634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biol Reprod 52(4):709–720

    Article  CAS  PubMed  Google Scholar 

  47. Kimura Y, Yanagimachi R (1995) Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 121(8):2397–2405

    CAS  PubMed  Google Scholar 

  48. Kimura Y, Yanagimachi R (1995) Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol Reprod 53(4):855–862

    Article  CAS  PubMed  Google Scholar 

  49. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374

    Article  CAS  PubMed  Google Scholar 

  50. Huang T, Kimura Y, Yanagimachi R (1996) The use of piezo micromanipulation for intracytoplasmic sperm injection of human oocytes. J Assist Reprod Genet 13(4):320–328

    Article  CAS  PubMed  Google Scholar 

  51. Rouet P, Smih F, Jasin M (1994a) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rouet P, Smih F, Jasin M (1994b) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23(24):5012–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12(6):224–228

    Article  CAS  PubMed  Google Scholar 

  55. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441(7093):656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pâques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7(1):49–66

    Article  PubMed  Google Scholar 

  57. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    Article  PubMed  Google Scholar 

  59. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764

    Article  CAS  PubMed  Google Scholar 

  60. Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105(50):19821–19826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67

    Article  CAS  PubMed  Google Scholar 

  63. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846

    Article  CAS  PubMed  Google Scholar 

  64. Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696

    Article  CAS  PubMed  Google Scholar 

  65. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  67. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  68. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23(5):720–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sweeney CL, Choi U, Liu C, Koontz S, Ha SK, Malech HL (2017) CRISPR-mediated knockout of Cybb in NSG mice establishes a model of chronic granulomatous disease for human stem-cell gene therapy transplants. Hum Gene Ther. 28(7):565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang L, Li MY, Qu C, Miao WY, Yin Q, Liao J, Cao HT, Huang M, Wang K, Zuo E, Peng G, Zhang SX, Chen G, Li Q, Tang K, Yu Q, Li Z, Wong CC, Xu G, Jing N, Yu X, Li J (2017) CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Res. 27(6):815–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hashimotoa M, Takemotob T (2015) Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep 5:11315

    Article  Google Scholar 

  77. Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200(2):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang W, Kutny PM, Byers SL, Longstaff CJ, DaCosta MJ, Pang C, Zhang Y, Taft RA, Buaas FW, Wang H (2016) Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J Genet Genomics 43(5):319–327

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen S, Lee B, Lee AY, Modzelewski AJ, He L (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291(28):14457–14467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35(5):435–437

    Article  CAS  PubMed  Google Scholar 

  81. Aten QT, Jensen BD, Burnett SH, Howell LL (2014) A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes. Rev Sci Instrum 85(5):055005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, W. (2019). Microinjection and Micromanipulation: A Historical Perspective. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics