Skip to main content

Prediction of Plant miRNA Targets

  • Protocol
  • First Online:
Plant MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1932))

Abstract

microRNAs (miRNAs) are the central component of an important layer of regulation of gene expression at posttranscriptional level. In plants, miRNAs target the transcripts in a highly complementary sequence-dependent manner. Extensive research is being made to study genome-wide miRNA-mediated regulation of gene expression, which has resulted in the development of many tools for in silico prediction of miRNA targets. Although several tools have been developed for predicting miRNA targets in model plants, genome-wide analysis of miRNA targets is still a challenge for non-model species that lack dedicated tools. Here, we describe an in silico procedure for studying miRNA-mediated interactions in plants, which is based on the fact that canonical miRNA-target sites are highly complementary, the miRNAs negatively regulate the expression of their target genes, and miRNAs may form regulatory networks as one miRNA may target more than one transcript and vice versa to modulate and fine-tune expression of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant MicroRNA annotation in the era of big data. Plant Cell 30:272–284

    Article  CAS  Google Scholar 

  2. Pandey SP, Baldwin IT (2007) RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. Plant J 50:40–53

    Article  CAS  Google Scholar 

  3. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  Google Scholar 

  4. Bozorov TA, Pandey SP, Dinh ST, Kim SG, Heinrich M, Gase K, Baldwin IT (2012) DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata. J Integr Plant Biol 54:189–206

    Article  CAS  Google Scholar 

  5. Pradhan M, Pandey P, Gase K, Sharaff M, Singh RK, Sethi A, Baldwin IT, Pandey SP (2017) Argonaute 8 (AGO8) mediates the elicitation of direct defenses against herbivory. Plant Physiol 175:927–946

    PubMed  PubMed Central  Google Scholar 

  6. Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    Article  CAS  Google Scholar 

  7. Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313

    Article  CAS  Google Scholar 

  8. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  Google Scholar 

  9. Liu Q, Wang F, Axtell MJ (2014) Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell 26:741–753

    Article  CAS  Google Scholar 

  10. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  CAS  Google Scholar 

  11. Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  Google Scholar 

  12. Chorostecki U, Crosa VA, Lodeyro AF, Bologna NG, Martin AP, Carrillo N, Schommer C, Palatnik JF (2012) Identification of new microRNA-regulated genes by conserved targeting in plant species. Nucleic Acids Res 40:8893–8904

    Article  CAS  Google Scholar 

  13. Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP (2014) A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics 15:348

    Article  Google Scholar 

  14. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  Google Scholar 

  15. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  Google Scholar 

  16. Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  CAS  Google Scholar 

  17. Chorostecki U, Palatnik JF (2014) comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants. Bioinformatics 30:2066–2067

    Article  CAS  Google Scholar 

  18. Zhang W, Le TD, Liu L, Zhou ZH, Li J (2016) Predicting miRNA targets by integrating gene regulatory knowledge with expression profiles. PLoS One 11:e0152860

    Article  Google Scholar 

  19. Zhang Z, Jiang L, Wang J, Gu P, Chen M (2015) MTide: an integrated tool for the identification of miRNA-target interaction in plants. Bioinformatics 31:290–291

    Article  CAS  Google Scholar 

  20. Ma X, Liu C, Gu L, Mo B, Cao X, Chen X (2018) TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants. Bioinformatics 34:1574–1576

    Article  Google Scholar 

  21. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  Google Scholar 

Download references

Acknowledgment

SPP acknowledges financial support by Max Planck Society and Max Planck India partner group program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree P. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pandey, P., Srivastava, P.K., Pandey, S.P. (2019). Prediction of Plant miRNA Targets. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics