Skip to main content

Time-Lapse Imaging of Developing Shoot Meristems Using A Confocal Laser Scanning Microscope

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Analysis of meristem shape and gene expression pattern has been conducted in many species over the past decades. Recent live imaging techniques have allowed for an unprecedented accumulation of data on the biology of meristematic cells, as well as a better understanding of the molecular and biophysical mechanisms behind shape changes in this tissue. Here we describe in detail how to prepare shoot apices of both Arabidopsis and tomato, in order to image them over time using a confocal microscope equipped with a long distance water-dipping lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernier G, Jensen WA (1966) Pattern of DNA synthesis in the meristematic cells of sinapis. Histochemie 6:85–92

    CAS  PubMed  Google Scholar 

  2. Hake S, Vollbrecht E, Freeling M (1989) Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J 8:15–22

    Article  CAS  Google Scholar 

  3. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405

    CAS  Google Scholar 

  4. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  CAS  Google Scholar 

  5. Kwiatkowska D, Dumais J (2003) Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J Exp Bot 54:1585–1595

    Article  CAS  Google Scholar 

  6. Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J (1998) Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:1375–1390

    Article  CAS  Google Scholar 

  7. Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L et al (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  CAS  Google Scholar 

  8. Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y et al (2004) In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16:74–87

    Article  CAS  Google Scholar 

  9. Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237

    Article  CAS  Google Scholar 

  10. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J et al (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7:547–553

    Article  CAS  Google Scholar 

  11. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    Article  CAS  Google Scholar 

  12. Shapiro BE, Tobin C, Mjolsness E, Meyerowitz EM (2015) Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc Natl Acad Sci U S A 112:4815–4820

    Article  CAS  Google Scholar 

  13. Louveaux M, Rochette S, Beauzamy L, Boudaoud A, Hamant O (2016) The impact of mechanical compression on cortical microtubules in Arabidopsis: a quantitative pipeline. Plant J 88:328–342

    Article  CAS  Google Scholar 

  14. Willis L, Refahi Y, Wightman R, Landrein B, Teles J et al (2016) Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. Proc Natl Acad Sci U S A 113:E8238–E8246

    Article  CAS  Google Scholar 

  15. Burian A, Barbier de Reuille P, Kuhlemeier C (2016) Patterns of stem cell divisions contribute to plant longevity. Curr Biol 26:1385–1394

    Article  CAS  Google Scholar 

  16. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  CAS  Google Scholar 

  17. Barbier de Reuille P, Bohn-Courseau I, Ljung K, Morin H, Carraro N et al (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632

    Article  CAS  Google Scholar 

  18. Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M et al (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23:373–384

    Article  CAS  Google Scholar 

  19. Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D et al (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451

    Article  CAS  Google Scholar 

  20. Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G et al (2014) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–421

    Article  CAS  Google Scholar 

  21. Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H et al (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508

    Article  Google Scholar 

  22. Stanislas T, Platre MP, Liu M, Rambaud-Lavigne LES, Jaillais Y et al (2018) A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana. BMC Biol 16:20

    Article  Google Scholar 

  23. Corson F, Hamant O, Bohn S, Traas J, Boudaoud A et al (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci U S A 106:8453–8458

    Article  CAS  Google Scholar 

  24. Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  Google Scholar 

  25. Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S et al (2012) Mechanical regulation of auxin-mediated growth. Curr Biol 22:1468–1476

    Article  CAS  Google Scholar 

  26. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E et al (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099

    Article  CAS  Google Scholar 

  27. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C et al (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  Google Scholar 

  28. Fleming AJ (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  29. Williams MH, Green PB (1988) Sequential scanning electron microscopy of a growing plant meristem. Protoplasma 147:77–79

    Article  Google Scholar 

  30. Routier-Kierzkowska A-L, Kwiatkowska D (2008) New stereoscopic reconstruction protocol for scanning electron microscope images and its application to in vivo replicas of the shoot apical meristem. Funct Plant Biol 35:1034

    Article  Google Scholar 

  31. Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. elife 4:05864

    Article  Google Scholar 

  32. Milani P, Gholamirad M, Traas J, Arneodo A, Boudaoud A et al (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67:1116–1123

    Article  CAS  Google Scholar 

  33. Beauzamy L, Louveaux M, Hamant O, Boudaoud A (2015) Mechanically, the shoot apical meristem of Arabidopsis behaves like a shell inflated by a pressure of about 1 MPa. Front Plant Sci 6:1038

    Article  Google Scholar 

  34. Peaucelle A (2014) AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. J Vis Exp 2014:89

    Google Scholar 

  35. Vernoux T, Besnard F, Traas J (2010) Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol 2:a001487

    Article  Google Scholar 

  36. Rounds CM, Lubeck E, Hepler PK, Winship LJ (2011) Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol 157:175–187

    Article  CAS  Google Scholar 

  37. Samach A, Lotan H (2007) The transition to flowering in tomato. Plant Biotechnol 24:71–82

    Article  Google Scholar 

  38. Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25:1439–1450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to Olivier Grandjean who initiated the live imaging of meristems in 2004, while in the group of Jan Traas [8]. This work was supported by a bilateral grant from INRA, France and Ministry of Science and Higher Education, Poland and by a grant from Agence Nationale de la Recherche ANR-10-BLAN-1516 «Mechastem», and a research grant SONATA BIS (2016/22/E/NZ3/00342) from the National Science Centre, Poland (to A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hamant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamant, O., Das, P., Burian, A. (2019). Time-Lapse Imaging of Developing Shoot Meristems Using A Confocal Laser Scanning Microscope. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics