Skip to main content

Selected Simple Methods of Plant Cell Wall Histochemistry and Staining for Light Microscopy

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Histochemical methods allow for identification and localization of various components within the tissue. Such information on the spatial heterogeneity is not available with biochemical methods. However, there is limitation of the specificity of such detection in context of complex tissue, which is important to consider, and interpretations of the results should regard suitable control treatments if possible. Such methods are valuable extension to specific optical and spectroscopic analytical methods. Here we present a set of selected simple methods of staining and histochemical tests with comments based on our laboratory experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  2. Sylvén B (1954) Metachromatic dye- substrate interactions. Q J Microsc Sci 93–95:327–358

    Google Scholar 

  3. Bergeron JA, Singer M (1958) Metachromasy: an experimental and theoretical reevaluation. J Biophys Biochem Cytol 4:433–457

    Article  CAS  Google Scholar 

  4. Pearse AG (1985) Histochemistry (theoretical and applied). Churchill Livingstone, Edinburgh

    Google Scholar 

  5. Rost FWD (1995) Fluorescence microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  6. Kasten FH, Burton V, Glover P (1959) Fluorescent Schiff-type reagents for cytochemical detection of polyaldehyde moieties in sections and smears. Nature 184:1797–1798

    Article  CAS  Google Scholar 

  7. Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J et al (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20:1494–1503

    Article  CAS  Google Scholar 

  8. Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105:129–133

    Article  Google Scholar 

  9. Wood PJ, Fulcher RG, Stone BA (1983) Studies on the specificity of interaction of cereal cell wall components with Congo red and Calcofluor. Specific detection and histochemistry of (1–3), (1–4), −β-D-glucan. J Cereal Sci 1:95–110

    Article  CAS  Google Scholar 

  10. Beneš K (1968) On the stainability of plant cell walls with alcian blue. Biol Plant 10:334–346

    Article  Google Scholar 

  11. Luft JH (1971) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368

    Article  CAS  Google Scholar 

  12. Muhlethaler K (1950) Electron microscopy of developing plant cell walls. Biochim Biophys Acta 5:1–9

    Article  CAS  Google Scholar 

  13. Soukup A, Votrubová O (2005) Wound- induced vascular occlusions in tissues of the reed Phragmites australis: their development and chemical nature. New Phytol 167:415–424

    Article  CAS  Google Scholar 

  14. Redgwell RJ, Selvendran RR (1986) Structural features of cell-wall polysaccharides of onion Allium cepa. Carbohydr Res 157:183–199

    Article  CAS  Google Scholar 

  15. Mullendore ML, Windt CW, Van As H, Knoblauch M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell 22:579–593

    Article  CAS  Google Scholar 

  16. Currier HB, Strugger S (1956) Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L. Protoplasma 45:552–559

    Article  Google Scholar 

  17. Eschrich W, Currier HB (1964) Identification of callose by its diachrome and fluorochrome reactions. Stain Technol 39:303–307

    Article  CAS  Google Scholar 

  18. Evans NA, Hoyne PA, Stone BA (1984) Characteristics and specificity of the interaction of a fluorochrome from aniline blue (sirofluor) with polysaccharides. Carbohydr Polym 4:215–230

    Article  CAS  Google Scholar 

  19. Smith MM, McCully ME (1978) A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95:229–254

    Article  CAS  Google Scholar 

  20. Priestley JH (1921) Suberin and cutin. New Phytol 20:17–29

    Article  CAS  Google Scholar 

  21. Soukup A, Tylová E (2018) Apoplastic barriers: their structure and function from a historical perspective. In: Sahi VP, Baluška F (eds) Concepts in cell biology-history and evolution. Springer, pp 155–183

    Google Scholar 

  22. Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    Article  CAS  Google Scholar 

  23. Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  Google Scholar 

  24. Brundrett MC, Kendrick B, Peterson CA (1988) Efficient lipid staining in plant material with Sudan red 7B or fluorol yellow 088 in polyethylene glycol. Biotech Histochem 66:133–142

    Google Scholar 

  25. Lux A, Morita S, Abe J, Ito K (2005) An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot 96:989–996

    Article  Google Scholar 

  26. Jensen WA (1962) Botanical histochemistry. Freeman, San Francisco

    Google Scholar 

  27. Zimmermann A (1892) Die botanische mikrotechnik: Ein handbuch der mikroskopischen präparations-reaktions- und tinktions- methoden. Verlag der H.Laupp’schen Buchhandlung, Tübingen

    Google Scholar 

  28. Brundrett MC, Enstone DE, Peterson CA (1988) A berberine–aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133–142

    Article  Google Scholar 

  29. Wiesner J (1878) Note űber das Verhalten des Phloroglucins und einiger verwandter Körper zur verholzten Zellmembrane. SitzungsberAkad Wiss Math-naturw Kl 77:60–66

    Google Scholar 

  30. Akin DE (1989) Light microscopy and histology of lignocellulose related to biodegradation. In: Chesson A, Ørskov ER (eds) Physico-chemical characterization of plant residues for industrial and feed use. Elsevier Applied Science, London, NY, pp 58–64

    Chapter  Google Scholar 

  31. Pomar F, Merino F, Barcelo AR (2002) O-4-linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220:17–28

    Article  CAS  Google Scholar 

  32. Clifford MN (1974) Specificity of acidic phloroglucinol reagents. J Chromatogr 94:321–324

    Article  CAS  Google Scholar 

  33. Gahan PA (1984) Plant histochemistry and cytochemistry—an introduction. Academic, London

    Google Scholar 

  34. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co, New York

    Google Scholar 

  35. Stafford HA (1962) Histochemical and biochemical differences between lignin-like materials in Phleum pratense L. Plant Physiol 37:643–649

    Article  CAS  Google Scholar 

  36. Ibrahim RK, Towers GHN, Gibbs RD (1962) Syringic and sinapic acids as indicators of differences between major groups of vascular plants. J Linn Soc Lond Bot 58:223–230

    Article  Google Scholar 

  37. Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259:508–510

    Article  CAS  Google Scholar 

  38. Harris PJ, Hartley RD (1980) Phenolic constituents of the cell walls of monocotyledons. Biochem System Ecol 8:153–160

    Article  CAS  Google Scholar 

  39. Ursache R, Andersen TG, Marhavý P, Geldner N (2018) A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J 93:399–412

    Article  CAS  Google Scholar 

  40. Almagro L, Gómez Ros LV, Belchi-Navarro S, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  Google Scholar 

  41. Frederick SE (1987) DAB procedures. In: Vaughn KC (ed) CRC handbook of plant cytochemistry–cytochemical localization of enzymes. CRC, Boca Raton, FL, pp 3–23

    Google Scholar 

  42. Graham RC, Karnovsky MJ (1966) The fine structural localization of peroxidase activity. J Histochem Cytochem 14:291–302

    Article  CAS  Google Scholar 

  43. Brand JA, Tsang VC, Zhou W, Shukla SB (1990) Comparison of particulate 3, 3′, 5, 5′-tetra-methylbenzidine and 3, 3′-diaminobenzidine as chromogenic substrates for immunoblot. BioTechniques 8:58–60

    CAS  PubMed  Google Scholar 

  44. Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    Article  CAS  Google Scholar 

  45. Evans NA, Hoyne PA (1982) A fluorochrome from aniline blue: structure, synthesis and fluorescence properties. Aust J Chem 35:2571–2575

    Article  CAS  Google Scholar 

  46. Pal MK (1965) Effects of differently hydrophobic solvents on the aggregation of cationic dyes as measured by quenching of fluorescence and/or metachromasia of the dyes. Histochem Cell Biol 5:24–31

    Article  CAS  Google Scholar 

  47. Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Biotech Histochem 48:247–249

    CAS  Google Scholar 

  48. O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty LTD, Melbourne

    Google Scholar 

  49. Lillie RD (1977) HJ Conn’s biological stains: a handbook on the nature and uses of the dyes employed in the biological laboratory. Sigma Chemical Company, St. Louis

    Google Scholar 

  50. Soukup A (2014) Selected simple methods of plant cell wall histochemistry and staining for light microscopy. Methods Mol Biol 1080:25–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current update of this chapter, first published as ref. 50, has been supported by the NPUI-LO1417 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Soukup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soukup, A. (2019). Selected Simple Methods of Plant Cell Wall Histochemistry and Staining for Light Microscopy. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics