Skip to main content

Site-Specific Modification of Proteins via Trypsiligase

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

Site-specific incorporation of artificial functionalities into protein targets is an important tool in both basic and applied research and can be a major challenge to protein chemists. Chemical labeling methods often targeting multiple positions within a protein and therefore suffer from lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes. In this contribution we describe the application of the highly specific trypsin variant named trypsiligase for the site-specific modification of virtual any target protein. We present two general routes of modification resulting in either N- or C-terminal functionalized protein products. Both reaction regimes proceed under mild and bioorthogonal conditions in a short period of time which result in homogeneously modified proteins bearing the artificial functionality exclusively at the desired position. We detail protocols for the expression and purification of trypsiligase as well as the construction of peptide or acyl donor ester probes used as substrates for the biocatalyst. In addition, we provide instructions how to perform the ultimate bioconjugation reactions and finally render assistance for the qualitative and quantitative analysis of the reaction course and outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartley BS, Shotton DM, Paul DB (1971) 10 pancreatic elastase. Enzymes 3:323–373. https://doi.org/10.1016/S1874-6047(08)60401-1

    Article  Google Scholar 

  2. Graf L, Craik CS, Patthy A et al (1987) Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Biochemistry 26(9):2616–2623. https://doi.org/10.1021/bi00383a031

    Article  CAS  PubMed  Google Scholar 

  3. Kurth T, Grahn S, Thormann M et al (1998) Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues. Biochemistry 37(33):11434–11440. https://doi.org/10.1021/bi980842z

    Article  CAS  PubMed  Google Scholar 

  4. Willett WS, Brinen LS, Fletterick RJ et al (1996) Delocalizing trypsin specificity with metal activation. Biochemistry 35(19):5992–5998. https://doi.org/10.1021/bi9530191

    Article  CAS  PubMed  Google Scholar 

  5. Liebscher S, Schoepfel M, Aumueller T et al (2014) N-terminal protein modification by substrate-activated reverse proteolysis. Angew Chem Int Ed 53(11):3024–3028. https://doi.org/10.1002/anie.201307736

    Article  CAS  Google Scholar 

  6. Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102(12):4817–4868. https://doi.org/10.1021/cr010164d

    Article  CAS  PubMed  Google Scholar 

  7. Liebscher S, Kornberger P, Fink G et al (2014) Derivatization of antibody fab fragments: a designer enzyme for native protein modification. Chembiochem 15(8):1096–1100. https://doi.org/10.1002/cbic.201400059

    Article  CAS  PubMed  Google Scholar 

  8. Meyer C, Liebscher S, Bordusa F (2016) Selective coupling of click anchors to proteins via trypsiligase. Bioconjug Chem 27(1):47–53. https://doi.org/10.1021/acs.bioconjchem.5b00618

    Article  CAS  PubMed  Google Scholar 

  9. Sekizaki H, Itoh K, Toyota E et al (1996) Synthesis and triptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides. Chem Pharm Bull 44(8):1577–1579. https://doi.org/10.1248/cpb.44.1577

    Article  CAS  PubMed  Google Scholar 

  10. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2:3247. https://doi.org/10.1038/nprot.2007.454

    Article  CAS  PubMed  Google Scholar 

  11. Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39(4):1355–1387. https://doi.org/10.1039/B901979K

    Article  CAS  PubMed  Google Scholar 

  12. Higgins DR, Cregg JM (1998) Introduction to Pichia pastoris. Methods Mol Biol 103:1–15. https://doi.org/10.1385/0-89603-421-6:1

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2(6):1528–1535. https://doi.org/10.1038/nprot.2007.209

    Article  CAS  PubMed  Google Scholar 

  14. Bouvet J-P (1994) Immunoglobulin Fab fragment-binding proteins. Int J Immunopharmacol 16(5):419–424. https://doi.org/10.1016/0192-0561(94)90031-0

    Article  CAS  PubMed  Google Scholar 

  15. Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151(1):131–135. https://doi.org/10.1016/0378-1119(94)90643-2

    Article  CAS  PubMed  Google Scholar 

  16. Skerra A (1993) Bacterial expression of immunoglobulin fragments. Curr Opin Immunol 5(2):256–262. https://doi.org/10.1016/0952-7915(93)90014-J

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bordusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liebscher, S., Bordusa, F. (2019). Site-Specific Modification of Proteins via Trypsiligase. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics