Skip to main content

Vascular-Related Biomarkers of Ischemic Stroke

  • Protocol
  • First Online:
Stroke Biomarkers

Part of the book series: Neuromethods ((NM,volume 147))

  • 784 Accesses

Abstract

Stroke remains a leading cause of death and disability worldwide, with ischemic stroke accounting for the vast majority of all stroke cases. Despite advances in the treatment of acute stroke with tissue-plasminogen activator and more recently with mechanical thrombectomy, limitations in the use and availability of these advanced treatment options have excluded most stroke patients from benefit. Moreover, the rapid diagnosis of acute stroke remains challenging due to “stroke mimics” (other entities with similar presentations) and the lack of a rapid, easily accessible means to rule in cerebral ischemia with imaging modalities such as magnetic resonance imaging or computed tomography perfusion in the acute or hyperacute setting. While biomarkers in other areas of medicine (e.g., troponin in myocardial injury) are well-established and commonly used in clinical practice, the identification and implementation of stroke-related biomarkers has proven to be challenging. This chapter provides a brief overview of several key diagnostic vascular biomarkers in ischemic stroke, highlighting the current development status of these biomarkers, limitations in their use, and their potential application in and implications for stroke care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ et al (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kolominsky-Rabas PL et al (2001) Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32(12):2735–2740

    Article  CAS  Google Scholar 

  3. Nogueira RG et al (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378(1):11–21. https://doi.org/10.1056/NEJMoa1706442

    Article  PubMed  Google Scholar 

  4. Albers GW et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378(8):708–718. https://doi.org/10.1056/NEJMoa1713973

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campbell BCV et al (2018) Tenecteplase versus Alteplase before thrombectomy for ischemic stroke. N Engl J Med 378(17):1573–1582. https://doi.org/10.1056/NEJMoa1716405

    Article  CAS  PubMed  Google Scholar 

  6. Nacu A et al (2017) NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. Stroke 48(2):335–341. https://doi.org/10.1161/STROKEAHA.116.014644

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shkirkova K et al (2018) Frequency, predictors, and outcomes of prehospital and early postarrival neurological deterioration in acute stroke: exploratory analysis of the FAST-MAG randomized clinical trial. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2018.1893

  8. Thomalla G et al (2018) MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 379(7):611–622. https://doi.org/10.1056/NEJMoa1804355

    Article  PubMed  Google Scholar 

  9. Morancho A et al (2010) Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Ann N Y Acad Sci 1207:123–133. https://doi.org/10.1111/j.1749-6632.2010.05734.x

    Article  CAS  PubMed  Google Scholar 

  10. Reynolds MA et al (2003) Early biomarkers of stroke. Clin Chem 49(10):1733–1739

    Article  CAS  Google Scholar 

  11. Montaner J et al (2001) Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 32(8):1759–1766

    Article  CAS  Google Scholar 

  12. Asahi M et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21(19):7724–7732

    Article  CAS  Google Scholar 

  13. Horstmann S et al (2003) Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 34(9):2165–2170. https://doi.org/10.1161/01.STR.0000088062.86084.F2

    Article  PubMed  Google Scholar 

  14. Bergers G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744. https://doi.org/10.1038/35036374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y et al (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27(4):697–709. https://doi.org/10.1038/sj.jcbfm.9600375

    Article  CAS  PubMed  Google Scholar 

  16. Pan R et al (2017) Blood occludin level as a potential biomarker for early blood brain barrier damage following ischemic stroke. Sci Rep 7:40331. https://doi.org/10.1038/srep40331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J et al (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 32(9):3044–3057. https://doi.org/10.1523/JNEUROSCI.6409-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lv J et al (2018) Focusing on claudin-5: a promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 161:79–96. https://doi.org/10.1016/j.pneurobio.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Nitta T et al (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660. https://doi.org/10.1083/jcb.200302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawabori M, Yenari MA (2015) Inflammatory responses in brain ischemia. Curr Med Chem 22(10):1258–1277

    Article  CAS  Google Scholar 

  21. Vogelgesang A, Becker KJ, Dressel A (2014) Immunological consequences of ischemic stroke. Acta Neurol Scand 129(1):1–12. https://doi.org/10.1111/ane.12165

    Article  CAS  PubMed  Google Scholar 

  22. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808. https://doi.org/10.1038/nm.2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsai NW et al (2009) The value of leukocyte adhesion molecules in patients after ischemic stroke. J Neurol 256(8):1296–1302. https://doi.org/10.1007/s00415-009-5117-3

    Article  CAS  PubMed  Google Scholar 

  24. Simundic AM et al (2004) Soluble adhesion molecules in acute ischemic stroke. Clin Invest Med 27(2):86–92

    CAS  PubMed  Google Scholar 

  25. Ishikawa M et al (2003) Molecular determinants of the prothrombogenic and inflammatory phenotype assumed by the postischemic cerebral microcirculation. Stroke 34(7):1777–1782. https://doi.org/10.1161/01.STR.0000074921.17767.F2

    Article  CAS  PubMed  Google Scholar 

  26. Bowes MP et al (1995) Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology 45(4):815–819

    Article  CAS  Google Scholar 

  27. Arumugam TV et al (2004) Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 287(6):H2555–H2560. https://doi.org/10.1152/ajpheart.00588.2004

    Article  CAS  PubMed  Google Scholar 

  28. Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57(8):1428–1434

    Article  Google Scholar 

  29. Becker KJ (2002) Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin 18(Suppl 2):s18–s22

    Article  Google Scholar 

  30. Sughrue ME et al (2004) Anti-adhesion molecule strategies as potential neuroprotective agents in cerebral ischemia: a critical review of the literature. Inflamm Res 53(10):497–508. https://doi.org/10.1007/s00011-004-1282-0

    Article  CAS  PubMed  Google Scholar 

  31. del Zoppo GJ et al (2009) Hyperfibrinogenemia and functional outcome from acute ischemic stroke. Stroke 40(5):1687–1691. https://doi.org/10.1161/STROKEAHA.108.527804

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hennerici MG et al (2006) Intravenous ancrod for acute ischaemic stroke in the European Stroke Treatment with Ancrod Trial: a randomised controlled trial. Lancet 368(9550):1871–1878. https://doi.org/10.1016/S0140-6736(06)69776-6

    Article  CAS  PubMed  Google Scholar 

  33. Di Napoli M, Papa F (2006) Should neurologists measure fibrinogen concentrations? J Neurol Sci 246(1–2):5–9. https://doi.org/10.1016/j.jns.2006.03.005

    Article  PubMed  Google Scholar 

  34. Siegerink B, Rosendaal FR, Algra A (2009) Genetic variation in fibrinogen; its relationship to fibrinogen levels and the risk of myocardial infarction and ischemic stroke. J Thromb Haemost 7(3):385–390. https://doi.org/10.1111/j.1538-7836.2008.03266.x

    Article  CAS  PubMed  Google Scholar 

  35. Williams SR et al (2016) Shared genetic susceptibility of vascular-related biomarkers with ischemic and recurrent stroke. Neurology 86(4):351–359. https://doi.org/10.1212/WNL.0000000000002319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ryu JK, McLarnon JG (2008) VEGF receptor antagonist Cyclo-VEGI reduces inflammatory reactivity and vascular leakiness and is neuroprotective against acute excitotoxic striatal insult. J Neuroinflamm 5:18. https://doi.org/10.1186/1742-2094-5-18

    Article  CAS  Google Scholar 

  37. Ryu JK, McLarnon JG (2009) A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13(9A):2911–2925. https://doi.org/10.1111/j.1582-4934.2008.00434.x

    Article  CAS  PubMed  Google Scholar 

  38. Bernardo A et al (2005) Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 3(3):562–570. https://doi.org/10.1111/j.1538-7836.2005.01122.x

    Article  CAS  PubMed  Google Scholar 

  39. Williams SR et al (2017) Genetic drivers of von Willebrand factor levels in an ischemic stroke population and association with risk for recurrent stroke. Stroke 48(6):1444–1450. https://doi.org/10.1161/STROKEAHA.116.015677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wieberdink RG et al (2010) High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke 41(10):2151–2156. https://doi.org/10.1161/STROKEAHA.110.586289

    Article  CAS  PubMed  Google Scholar 

  41. Carter AM et al (2007) Predictive variables for mortality after acute ischemic stroke. Stroke 38(6):1873–1880. https://doi.org/10.1161/STROKEAHA.106.474569

    Article  PubMed  Google Scholar 

  42. Kleinschnitz C et al (2009) Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 113(15):3600–3603. https://doi.org/10.1182/blood-2008-09-180695

    Article  CAS  PubMed  Google Scholar 

  43. Staelens S et al (2006) Humanization by variable domain resurfacing and grafting on a human IgG4, using a new approach for determination of non-human like surface accessible framework residues based on homology modelling of variable domains. Mol Immunol 43(8):1243–1257. https://doi.org/10.1016/j.molimm.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  44. Miller DJ, Simpson JR, Silver B (2011) Safety of thrombolysis in acute ischemic stroke: a review of complications, risk factors, and newer technologies. Neurohospitalist 1(3):138–147. https://doi.org/10.1177/1941875211408731

    Article  PubMed  PubMed Central  Google Scholar 

  45. Castellanos M et al (2004) Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke 35(7):1671–1676. https://doi.org/10.1161/01.STR.0000131656.47979.39

    Article  CAS  PubMed  Google Scholar 

  46. Castellanos M et al (2007) Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke 38(6):1855–1859. https://doi.org/10.1161/STROKEAHA.106.481556

    Article  CAS  PubMed  Google Scholar 

  47. Ribo M et al (2004) Admission fibrinolytic profile is associated with symptomatic hemorrhagic transformation in stroke patients treated with tissue plasminogen activator. Stroke 35(9):2123–2127. https://doi.org/10.1161/01.STR.0000137608.73660.4c

    Article  CAS  PubMed  Google Scholar 

  48. Montaner J et al (2003) Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 107(4):598–603

    Article  CAS  Google Scholar 

  49. Bustamante A et al (2018) Usefulness of ADAMTS13 to predict response to recanalization therapies in acute ischemic stroke. Neurology 90(12):e995–e1004. https://doi.org/10.1212/WNL.0000000000005162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marti-Fabregas J et al (2005) Hemostatic markers of recanalization in patients with ischemic stroke treated with rt-PA. Neurology 65(3):366–370. https://doi.org/10.1212/01.wnl.0000171704.50395.ba

    Article  CAS  PubMed  Google Scholar 

  51. Faille D et al (2014) Endothelial markers are associated with thrombolysis resistance in acute stroke patients. Eur J Neurol 21(4):643–647. https://doi.org/10.1111/ene.12369

    Article  CAS  PubMed  Google Scholar 

  52. Kaikita K et al (2006) Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J Thromb Haemost 4(11):2490–2493. https://doi.org/10.1111/j.1538-7836.2006.02161.x

    Article  CAS  PubMed  Google Scholar 

  53. McCabe DJ et al (2015) Relationship between ADAMTS13 activity, von Willebrand factor antigen levels and platelet function in the early and late phases after TIA or ischaemic stroke. J Neurol Sci 348(1–2):35–40. https://doi.org/10.1016/j.jns.2014.10.035

    Article  CAS  PubMed  Google Scholar 

  54. Ouchi N et al (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283(47):32802–32811. https://doi.org/10.1074/jbc.M803440200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bivard A et al (2017) Platelet microparticles: a biomarker for recanalization in rtPA-treated ischemic stroke patients. Ann Clin Transl Neurol 4(3):175–179. https://doi.org/10.1002/acn3.392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernandez-Cadenas I et al (2009) Lower concentrations of thrombin-antithrombin complex (TAT) correlate to higher recanalisation rates among ischaemic stroke patients treated with t-PA. Thromb Haemost 102(4):759–764. https://doi.org/10.1160/TH08-06-0398

    Article  CAS  PubMed  Google Scholar 

  57. Tanne D et al (2006) Hemostatic activation and outcome after recombinant tissue plasminogen activator therapy for acute ischemic stroke. Stroke 37(7):1798–1804. https://doi.org/10.1161/01.STR.0000226897.43749.27

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez-Cadenas I et al (2007) Influence of thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 gene polymorphisms on tissue-type plasminogen activator-induced recanalization in ischemic stroke patients. J Thromb Haemost 5(9):1862–1868. https://doi.org/10.1111/j.1538-7836.2007.02665.x

    Article  CAS  PubMed  Google Scholar 

  59. Ribo M et al (2004) Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thromb Haemost 91(6):1146–1151. https://doi.org/10.1160/TH04-02-0097

    Article  CAS  PubMed  Google Scholar 

  60. Sakharov DV, Plow EF, Rijken DC (1997) On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem 272(22):14477–14482

    Article  CAS  Google Scholar 

  61. Philippou H (2014) Thrombin activatable fibrinolysis inhibitor (TAFI): more complex when it meets the clot. Thromb Res 133(1):1–2. https://doi.org/10.1016/j.thromres.2013.10.034

    Article  CAS  PubMed  Google Scholar 

  62. Serebruany V et al (2011) Effects of Aggrenox and aspirin on plasma endothelial nitric oxide synthase and oxidised low-density lipoproteins in patients after ischaemic stroke. The AGgrenox versus aspirin therapy evaluation (AGATE) biomarker substudy. Thromb Haemost 105(1):81–87. https://doi.org/10.1160/TH10-05-0316

    Article  CAS  PubMed  Google Scholar 

  63. Nishi K et al (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22(10):1649–1654

    Article  CAS  Google Scholar 

  64. Wang A et al (2017) Association of oxidized low-density lipoprotein with prognosis of stroke and stroke subtypes. Stroke 48(1):91–97. https://doi.org/10.1161/STROKEAHA.116.014816

    Article  CAS  PubMed  Google Scholar 

  65. Dobaczewski M et al (2008) Targeting the urine and plasma determinants of thromboxane A2 metabolism in detection of aspirin effectiveness. Blood Coagul Fibrinolysis 19(5):421–428. https://doi.org/10.1097/MBC.0b013e3283049686

    Article  CAS  PubMed  Google Scholar 

  66. Sharp FR et al (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20(7):1011–1032. https://doi.org/10.1097/00004647-200007000-00001

    Article  CAS  PubMed  Google Scholar 

  67. Yan A et al (2016) Thromboxane A2 receptor antagonist SQ29548 reduces ischemic stroke-induced microglia/macrophages activation and enrichment, and ameliorates brain injury. Sci Rep 6:35885. https://doi.org/10.1038/srep35885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dharmasaroja PA, Sae-Lim S (2014) Comparison of aspirin response measured by urinary 11-dehydrothromboxane B2 and VerifyNow aspirin assay in patients with ischemic stroke. J Stroke Cerebrovasc Dis 23(5):953–957. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.08.001

    Article  PubMed  Google Scholar 

  69. Nordeen JD et al (2013) Clopidogrel resistance by P2Y12 platelet function testing in patients undergoing neuroendovascular procedures: incidence of ischemic and hemorrhagic complications. J Vasc Interv Neurol 6(1):26–34

    PubMed  PubMed Central  Google Scholar 

  70. Pare G et al (2010) Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med 363(18):1704–1714. https://doi.org/10.1056/NEJMoa1008410

    Article  CAS  PubMed  Google Scholar 

  71. Kass-Hout T et al (2015) Neurointerventional stenting and antiplatelet function testing: to do or not to do? Interv Neurol 3(3–4):184–189. https://doi.org/10.1159/000431261

    Article  PubMed  PubMed Central  Google Scholar 

  72. Harrison P et al (2005) Screening for aspirin responsiveness after transient ischemic attack and stroke: comparison of 2 point-of-care platelet function tests with optical aggregometry. Stroke 36(5):1001–1005. https://doi.org/10.1161/01.STR.0000162719.11058.bd

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford B. Worrall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arteaga, D., Worrall, B.B. (2020). Vascular-Related Biomarkers of Ischemic Stroke. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke Biomarkers. Neuromethods, vol 147. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9682-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9682-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9681-0

  • Online ISBN: 978-1-4939-9682-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics