Skip to main content

Fluorescent Labeling and Quantification of Vesicular ATP Release Using Live Cell Imaging

  • Protocol
  • First Online:
Purinergic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2041))

Abstract

Adenosine triphosphate (ATP) is actively transported into vesicles for purinergic neurotransmission by the vesicular nucleotide transporter, VNUT, encoded by the gene, solute carrier 17, member 9 (SLC17A9). In this chapter, methods are described for fluorescent labeling of VNUT positive cells and quantification of vesicular ATP release using live cell imaging. Directions for preparation of viable dissociated neurons and cellular labeling with an antibody against VNUT and for ATP containing synaptic vesicles with fluorescent ATP markers, quinacrine or MANT-ATP, are detailed. Using confocal microscope live cell imaging, cells positive for VNUT can be observed colocalized with fluorescent ATP vesicular markers, which occur as discrete puncta near the cell membrane. Vesicular release, stimulated with a depolarizing, high potassium physiological saline solution induces ATP marker fluorescence reduction at the cell membrane and this can be quantified over time to assess ATP release. Pretreatment with the voltage gated calcium channel blocker, cadmium, blocks depolarization-induced membrane fluorescence changes, suggesting that VNUT-positive neurons release ATP via calcium-dependent exocytosis. This technique may be applied for quantifying vesicular ATP release across the peripheral and central nervous system and is useful for unveiling the intricacies of purinergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. https://doi.org/10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797. https://doi.org/10.1152/physrev.00043.2006

    Article  CAS  PubMed  Google Scholar 

  3. Taruno A (2018) ATP release channels. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030808

  4. Burnstock G, Satchell DG, Smythe A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46(2):234–242

    Article  CAS  Google Scholar 

  5. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8(3):359–373. https://doi.org/10.1007/s11302-012-9304-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Loiola EC, Ventura AL (2011) Release of ATP from avian Muller glia cells in culture. Neurochem Int 58(3):414–422. https://doi.org/10.1016/j.neuint.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  7. Reigada D, Mitchell CH (2005) Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol Cell Physiol 288(1):C132–C140. https://doi.org/10.1152/ajpcell.00201.2004

    Article  CAS  PubMed  Google Scholar 

  8. Santos PF, Caramelo OL, Carvalho AP, Duarte CB (1999) Characterization of ATP release from cultures enriched in cholinergic amacrine-like neurons. J Neurobiol 41(3):340–348

    Article  CAS  Google Scholar 

  9. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105(15):5683–5686. https://doi.org/10.1073/pnas.0800141105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154(2):675–684. https://doi.org/10.1210/en.2012-1818

    Article  CAS  Google Scholar 

  11. Haanes KA, Kowal JM, Arpino G, Lange SC, Moriyama Y, Pedersen PA, Novak I (2014) Role of vesicular nucleotide transporter VNUT (SLC17A9) in release of ATP from AR42J cells and mouse pancreatic acinar cells. Purinergic Signal 10(3):431–440. https://doi.org/10.1007/s11302-014-9406-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harada Y, Hiasa M (2014) Immunological identification of vesicular nucleotide transporter in intestinal L cells. Biol Pharm Bull 37(7):1090–1095

    Article  CAS  Google Scholar 

  13. Iwatsuki K, Ichikawa R, Hiasa M, Moriyama Y, Torii K, Uneyama H (2009) Identification of the vesicular nucleotide transporter (VNUT) in taste cells. Biochem Biophys Res Commun 388(1):1–5. https://doi.org/10.1016/j.bbrc.2009.07.069

    Article  CAS  PubMed  Google Scholar 

  14. Larsson M, Sawada K, Morland C, Hiasa M, Ormel L, Moriyama Y, Gundersen V (2012) Functional and anatomical identification of a vesicular transporter mediating neuronal ATP release. Cereb Cortex 22(5):1203–1214. https://doi.org/10.1093/cercor/bhr203

    Article  PubMed  Google Scholar 

  15. Oya M, Kitaguchi T, Yanagihara Y, Numano R, Kakeyama M, Ikematsu K, Tsuboi T (2013) Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem Biophys Res Commun 438(1):145–151. https://doi.org/10.1016/j.bbrc.2013.07.043

    Article  CAS  PubMed  Google Scholar 

  16. Sathe MN, Woo K, Kresge C, Bugde A, Luby-Phelps K, Lewis MA, Feranchak AP (2011) Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles. J Biol Chem 286(28):25363–25376. https://doi.org/10.1074/jbc.M111.232868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sesma JI, Kreda SM, Okada SF, van Heusden C, Moussa L, Jones LC, O’Neal WK, Togawa N, Hiasa M, Moriyama Y, Lazarowski ER (2013) Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules. Am J Physiol Cell Physiol 304(10):C976–C984. https://doi.org/10.1152/ajpcell.00371.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziogas J, Vessey K (2001) Angiotensin-induced enhancement of excitatory junction potentials evoked by periarteriolar nerve stimulation and vasoconstriction in rat mesenteric arteries are both mediated by the angiotensin AT1 receptor. Pharmacology 63(2):103–111. https://doi.org/10.1159/000056120

    Article  CAS  PubMed  Google Scholar 

  19. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38(6):900–908

    Article  CAS  Google Scholar 

  20. Ho T, Jobling AI, Greferath U, Chuang T, Ramesh A, Fletcher EL, Vessey KA (2015) Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Front Cell Neurosci 9:389. https://doi.org/10.3389/fncel.2015.00389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchell CH, Carre DA, McGlinn AM, Stone RA, Civan MM (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci U S A 95(12):7174–7178

    Article  CAS  Google Scholar 

  22. Sorensen CE, Novak I (2001) Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy. J Biol Chem 276(35):32925–32932. https://doi.org/10.1074/jbc.M103313200

    Article  CAS  PubMed  Google Scholar 

  23. Dou Y, Wu HJ, Li HQ, Qin S, Wang YE, Li J, Lou HF, Chen Z, Li XM, Luo QM, Duan S (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res 22(6):1022–1033. https://doi.org/10.1038/cr.2012.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irvin JL, Irvin EM (1954) The interaction of quinacrine with adenine nucleotides. J Biol Chem 210(1):45–56

    CAS  PubMed  Google Scholar 

  25. Menendez-Mendez A, Diaz-Hernandez JI, Ortega F, Gualix J, Gomez-Villafuertes R, Miras-Portugal MT (2017) Specific temporal distribution and subcellular localization of a functional vesicular nucleotide transporter (VNUT) in cerebellar granule neurons. Front Pharmacol 8:951. https://doi.org/10.3389/fphar.2017.00951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alund M, Olson L (1979) Depolarization-induced decreases in fluroescence intensity of gastro-intestinal quinacrine-binding nerves. Brain Res 166(1):121–137

    Article  CAS  Google Scholar 

  27. Moriyama S, Hiasa M (2016) Expression of vesicular nucleotide transporter in the mouse retina. Biol Pharm Bull 39(4):564–569. https://doi.org/10.1248/bpb.b15-00872

    Article  CAS  PubMed  Google Scholar 

  28. Neal M, Cunningham J (1994) Modulation by endogenous ATP of the light-evoked release of ACh from retinal cholinergic neurones. Br J Pharmacol 113(4):1085–1087

    Article  CAS  Google Scholar 

  29. Rodriguez PC, Pereira DB, Borgkvist A, Wong MY, Barnard C, Sonders MS, Zhang H, Sames D, Sulzer D (2013) Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. Proc Natl Acad Sci U S A 110(3):870–875. https://doi.org/10.1073/pnas.1213569110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstan A. Vessey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vessey, K.A., Ho, T., Jobling, A.I., Wang, A.Y., Fletcher, E.L. (2020). Fluorescent Labeling and Quantification of Vesicular ATP Release Using Live Cell Imaging. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics