Skip to main content

Cell-Based Adhesion Assays for Isolation of Snake Venom’s Integrin Antagonists

  • Protocol
  • First Online:
Snake and Spider Toxins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2068))

Abstract

Snake venoms could lead to the development of new drugs to treat a range of life-threatening conditions like cardiovascular diseases. Most snake venoms contain a large variety of lethal toxins as well as anti-adhesive proteins such as disintegrins, which have evolved from the harmless compounds ADAMs (proteins with a disintegrin and a metalloprotease domain) and C-type lectin proteins which disturb connective tissue and cell-matrix interaction. These anti-adhesive proteins target and block integrin receptors and disrupt normal biological processes in snakes’ prey such as connective tissue physiology and blood clotting. This chapter provides the experimental details of a practical, cell-based adhesion protocol to help identify and isolate disintegrins and C-type lectin proteins from snake venoms, important tools in integrin research and lead compounds for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  Google Scholar 

  2. Akiyama SK (1996) Integrins in cell adhesion and signaling. Hum Cell 9:181–186

    CAS  PubMed  Google Scholar 

  3. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  CAS  Google Scholar 

  4. Humphries JD, Chastney MR, Askari JA, Humphries MJ (2018) Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 56:14–21. https://doi.org/10.1016/j.ceb.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  5. Manninen A, Varjosalo M (2017) A proteomics view on integrin-mediated adhesions. Proteomics 17. https://doi.org/10.1002/pmic.201600022

  6. Gehler S, Ponik SM, Riching KM, Keely PJ (2013) Bi-directional signaling: extracellular matrix and integrin regulation of breast tumor progression. Crit Rev Eukaryot Gene Expr 23:139–157

    Article  CAS  Google Scholar 

  7. Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207. https://doi.org/10.1016/S1044-579X(02)00023-8

    Article  CAS  PubMed  Google Scholar 

  8. Juliano RL, Varner JA (1993) Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 5:812–818

    Article  CAS  Google Scholar 

  9. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715. https://doi.org/10.1146/annurev.cellbio.12.1.697

    Article  CAS  PubMed  Google Scholar 

  10. Calvete JJ, Marcinkiewicz C, Monleon D, Esteve V, Celda B, Juarez P, Sanz L (2005) Snake venom disintegrins: evolution of structure and function. Toxicon 45:1063–1074. https://doi.org/10.1016/j.toxicon.2005.02.024

    Article  CAS  PubMed  Google Scholar 

  11. Marcinkiewicz C (2013) Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int J Biochem Cell Biol 45:1974–1986. https://doi.org/10.1016/j.biocel.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David V, Succar BB, de Moraes JA, Saldanha-Gama RFG, Barja-Fidalgo C, Zingali RB (2018) Recombinant and Chimeric Disintegrins in Preclinical Research. Toxins 10. https://doi.org/10.3390/toxins10080321

  13. Fujii Y, Okuda D, Fujimoto Z, Horii K, Morita T, Mizuno H (2003) Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J Mol Biol 332:1115–1122

    Article  CAS  Google Scholar 

  14. Swenson S, Ramu S, Markland FS (2007) Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr Pharm Des 13:2860–2871

    Article  CAS  Google Scholar 

  15. Kisiel DG, Calvete JJ, Katzhendler J, Fertala A, Lazarovici P, Marcinkiewicz C (2004) Structural determinants of the selectivity of KTS-disintegrins for the alpha1beta1 integrin. FEBS Lett 577:478–482. https://doi.org/10.1016/j.febslet.2004.10.050

    Article  CAS  PubMed  Google Scholar 

  16. Moreno-Murciano MP, Monleon D, Calvete JJ, Celda B, Marcinkiewicz C (2003) Amino acid sequence and homology modeling of obtustatin, a novel non-RGD-containing short disintegrin isolated from the venom of Vipera lebetina obtusa. Protein Sci 12:366–371. https://doi.org/10.1110/ps.0230203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walsh EM, Marcinkiewicz C (2011) Non-RGD-containing snake venom disintegrins, functional and structural relations. Toxicon 58:355–362. https://doi.org/10.1016/j.toxicon.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Takeda S (2016) ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins 8. https://doi.org/10.3390/toxins8050155

  19. Huang TF (1998) What have snakes taught us about integrins? Cell Mol Life Sci 54:527–540. https://doi.org/10.1007/s000180050181

    Article  CAS  PubMed  Google Scholar 

  20. Lu X, Lu D, Scully MF, Kakkar VV (2005) Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins. Curr Med Chem Cardiovasc Hematol Agents 3:249–260

    Article  CAS  Google Scholar 

  21. Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497. https://doi.org/10.1074/jbc.R109.052340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arlinghaus FT, Eble JA (2012) C-type lectin-like proteins from snake venoms. Toxicon 60:512–519. https://doi.org/10.1016/j.toxicon.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  23. Momic T, Cohen G, Reich R, Arlinghaus FT, Eble JA, Marcinkiewicz C, Lazarovici P (2012) Vixapatin (VP12), a c-type lectin-protein from Vipera xantina palestinae venom: characterization as a novel anti-angiogenic compound. Toxins 4:862–877. https://doi.org/10.3390/toxins4100862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Staniszewska I, Walsh EM, Rothman VL, Gaathon A, Tuszynski GP, Calvete JJ, Lazarovici P, Marcinkiewicz C (2009) Effect of VP12 and viperistatin on inhibition of collagen-receptor-dependent melanoma metastasis. Cancer Biol Ther 8:1507–1516

    Article  CAS  Google Scholar 

  25. Arlinghaus FT, Momic T, Ammar NA, Shai E, Spectre G, Varon D, Marcinkiewicz C, Heide H, Lazarovici P, Eble JA (2013) Identification of alpha2beta1 integrin inhibitor VP-i with anti-platelet properties in the venom of Vipera palaestinae. Toxicon 64:96–105. https://doi.org/10.1016/j.toxicon.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  26. Jakubowski P, Calvete JJ, Eble JA, Lazarovici P, Marcinkiewicz C (2013) Identification of inhibitors of alpha2beta1 integrin, members of C-lectin type proteins, in Echis sochureki venom. Toxicol Appl Pharmacol 269:34–42. https://doi.org/10.1016/j.taap.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Momic T, Katzehendler J, Benny O, Lahiani A, Cohen G, Noy E, Senderowitz H, Eble JA, Marcinkiewicz C, Lazarovici P (2014) Vimocin and vidapin, cyclic KTS peptides, are dual antagonists of alpha1beta1/alpha2beta1 integrins with antiangiogenic activity. J Pharmacol Exp Ther 350:506–519. https://doi.org/10.1124/jpet.114.214643

    Article  CAS  PubMed  Google Scholar 

  28. Momic T, Katzhendler J, Shai E, Noy E, Senderowitz H, Eble JA, Marcinkiewicz C, Varon D, Lazarovici P (2015) Vipegitide: a folded peptidomimetic partial antagonist of alpha2beta1 integrin with antiplatelet aggregation activity. Drug Des Devel Ther 9:291–304. https://doi.org/10.2147/DDDT.S72844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphries MJ (2009) Cell adhesion assays. Methods Mol Biol 522:203–210. https://doi.org/10.1007/978-1-59745-413-1_14

    Article  CAS  PubMed  Google Scholar 

  30. Pimton P, Sarkar S, Sheth N, Perets A, Marcinkiewicz C, Lazarovici P, Lelkes PI (2011) Fibronectin-mediated upregulation of alpha5beta1 integrin and cell adhesion during differentiation of mouse embryonic stem cells. Cell Adhes Migr 5:73–82

    Article  Google Scholar 

  31. Souza DH, Iemma MR, Ferreira LL, Faria JP, Oliva ML, Zingali RB, Niewiarowski S, Selistre-de-Araujo HS (2000) The disintegrin-like domain of the snake venom metalloprotease alternagin inhibits alpha2beta1 integrin-mediated cell adhesion. Arch Biochem Biophys 384:341–350. https://doi.org/10.1006/abbi.2000.2120

    Article  CAS  PubMed  Google Scholar 

  32. Cominetti MR, Ribeiro JU, Fox JW, Selistre-de-Araujo HS (2003) BaG, a new dimeric metalloproteinase/disintegrin from the Bothrops alternatus snake venom that interacts with alpha5beta1 integrin. Arch Biochem Biophys 416:171–179

    Article  CAS  Google Scholar 

  33. Vitale M, Di Matola T, Fenzi G, Illario M, Rossi G (1998) Fibronectin is required to prevent thyroid cell apoptosis through an integrin-mediated adhesion mechanism. J Clin Endocrinol Metab 83:3673–3680. https://doi.org/10.1210/jcem.83.10.5175

    Article  CAS  PubMed  Google Scholar 

  34. Amarante-Mendes JG, Starobinas N, Macedo MS (1994) Colorimetric assay for the measurement of thymocyte/thymic stromal cell adhesion. Brazilian J Med Biol Res 27:1321–1330

    CAS  Google Scholar 

  35. Bonnekoh B, Wevers A, Jugert F, Merk H, Mahrle G (1989) Colorimetric growth assay for epidermal cell cultures by their crystal violet binding capacity. Arch Dermatol Res 281:487–490

    Article  CAS  Google Scholar 

  36. Dutt MK (1980) Staining of depolymerised DNA in mammalian tissues with methyl violet 6B and crystal violet. Folia Histochem Cytochem 18:79–83

    CAS  Google Scholar 

  37. Poole CA, Brookes NH, Gilbert RT, Beaumont BW, Crowther A, Scott L, Merrilees MJ (1996) Detection of viable and non-viable cells in connective tissue explants using the fixable fluoroprobes 5-chloromethylfluorescein diacetate and ethidium homodimer-1. Connect Tissue Res 33:233–241

    Article  CAS  Google Scholar 

  38. Heilingoetter CL, Jensen MB (2016) Histological methods for ex vivo axon tracing: A systematic review. Neurol Res 38:561–569. https://doi.org/10.1080/01616412.2016.1153820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gallagher SJ, Shank JA, Bochner BS, Wagner EM (2002) Methods to track leukocyte and erythrocyte transit through the bronchial vasculature in sheep. J Immunol Methods 271:89–97

    Article  CAS  Google Scholar 

  40. Ragnarson B, Bengtsson L, Haegerstrand A (1992) Labeling with fluorescent carbocyanine dyes of cultured endothelial and smooth muscle cells by growth in dye-containing medium. Histochemistry 97:329–333

    Article  CAS  Google Scholar 

  41. Anderson WM, Trgovcich-Zacok D (1995) Carbocyanine dyes with long alkyl side-chains: broad spectrum inhibitors of mitochondrial electron transport chain activity. Biochem Pharmacol 49:1303–1311

    Article  CAS  Google Scholar 

  42. Lu W, McCallum L, Irvine AE (2009) A rapid and sensitive method for measuring cell adhesion. J Cell Commun Signal 3:147–149. https://doi.org/10.1007/s12079-009-0052-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Portnoy E, Lecht S, Lazarovici P, Danino D, Magdassi S (2011) Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine 7:480–488. https://doi.org/10.1016/j.nano.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  44. Cohen G, Lecht S, Arien-Zakay H, Ettinger K, Amsalem O, Oron-Herman M, Yavin E, Prus D, Benita S, Nissan A, Lazarovici P (2012) Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor. PLoS One 7:e48803. https://doi.org/10.1371/journal.pone.0048803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen G, Lecht S, Oron-Herman M, Momic T, Nissan A, Lazarovici P (2013) Near infrared optical visualization of epidermal growth factor receptors levels in COLO205 colorectal cell line, orthotopic tumor in mice and human biopsies. Int J Mol Sci 14:14669–14688. https://doi.org/10.3390/ijms140714669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee H-J, Lee J-S, Hwang SJ, Lee H-Y (2015) Insulin-like growth factor binding protein-3 inhibits cell adhesion via suppression of integrin beta4 expression. Oncotarget 6:15150–15163. https://doi.org/10.18632/oncotarget.3825

    Article  PubMed  PubMed Central  Google Scholar 

  47. Unger C, Felldin U, Rodin S, Nordenskjold A, Dilber S, Hovatta O (2016) Derivation of human skin fibroblast lines for feeder cells of human embryonic stem cells. Curr Protoc Stem Cell Biol 36:1C.7.1–1C.711. https://doi.org/10.1002/9780470151808.sc01c07s36

    Article  Google Scholar 

  48. Delwel GO, Hogervorst F, Kuikman I, Paulsson M, Timpl R, Sonnenberg A (1993) Expression and function of the cytoplasmic variants of the integrin alpha 6 subunit in transfected K562 cells. Activation-dependent adhesion and interaction with isoforms of laminin. J Biol Chem 268:25865–25875

    CAS  PubMed  Google Scholar 

  49. Kawaguchi S, Hemler ME (1993) Role of the alpha subunit cytoplasmic domain in regulation of adhesive activity mediated by the integrin VLA-2. J Biol Chem 268:16279–16285

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Philip Lazarovici holds the Jacob Gitlin Chair in Physiology and is affiliated with, and partially supported by, the Grass Center for Drug Design and Synthesis of Novel Therapeutics, David R. Bloom Center of Pharmacy, and the Adolph and Klara Brettler Medical Research Center at the Hebrew University of Jerusalem, Israel. Peter I Lelkes is the Laura H. Carnell Professor of Bioengineering.Cezary Marcinkiewicz and Peter I Lelkes acknowledge support through a grant from Temple University's Moulder Center for Drug Discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Lazarovici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lazarovici, P., Marcinkiewicz, C., Lelkes, P.I. (2020). Cell-Based Adhesion Assays for Isolation of Snake Venom’s Integrin Antagonists. In: Priel, A. (eds) Snake and Spider Toxins. Methods in Molecular Biology, vol 2068. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9845-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9845-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9844-9

  • Online ISBN: 978-1-4939-9845-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics