Skip to main content

Production and Purification of Recombinant Toxins

  • Protocol
  • First Online:
Snake and Spider Toxins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2068))

Abstract

Recombinant expression of toxins enables us to produce adequate quantities of these proteins which can be used to perform experiments at molecular, cellular, and behavioral levels. Furthermore, toxins can be edited by using simple molecular biology methods when producing them recombinantly. Thus, in many cases establishing a protocol for the recombinant expression of a toxin of interest is crucial in exploring the structure and function of the toxin and its effectors. To date, Escherichia coli (E. coli) represents the most widely used heterologous expression system in which recombinant proteins are usually accumulated in the bacterium cytoplasm. However, as many animal toxins contain disulfide bonds they tend to be misfolded and aggregate when found in the reducing E. coli cytoplasm. In contrast, conditions in the bacterium periplasm allow disulfide bond formation and correct folding of such toxins. Here, we describe a protocol for the production and purification of bioactive recombinant disulfide-rich toxins via periplasmic expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klint JK, Senff S, Saez NJ et al (2013) Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One 8:e63865. https://doi.org/10.1371/journal.pone.0063865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dilworth MV, Piel MS, Bettaney KE et al (2018) Microbial expression systems for membrane proteins. Methods 147:3. https://doi.org/10.1016/J.YMETH.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  3. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63. https://doi.org/10.3389/fmicb.2014.00063

    Article  PubMed  PubMed Central  Google Scholar 

  4. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306. https://doi.org/10.1016/J.BIOTECHADV.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Öztürk S, Ergün BG, Çalık P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101:7459–7475. https://doi.org/10.1007/s00253-017-8487-y

    Article  CAS  PubMed  Google Scholar 

  6. Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Factories 10:32. https://doi.org/10.1186/1475-2859-10-32

    Article  CAS  Google Scholar 

  7. Berlec A, Štrukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274. https://doi.org/10.1007/s10295-013-1235-0

    Article  CAS  PubMed  Google Scholar 

  8. Jalalirad R (2013) Selective and efficient extraction of recombinant proteins from the periplasm of Escherichia coli using low concentrations of chemicals. J Ind Microbiol Biotechnol 40:1117–1129. https://doi.org/10.1007/s10295-013-1307-1

    Article  CAS  PubMed  Google Scholar 

  9. Low KO, Muhammad Mahadi N, Illias R (2013) Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 97:3811–3826. https://doi.org/10.1007/s00253-013-4831-z

    Article  CAS  PubMed  Google Scholar 

  10. Freudl R (2018) Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Factories 17:52. https://doi.org/10.1186/s12934-018-0901-3

    Article  CAS  Google Scholar 

  11. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222. https://doi.org/10.1007/s00253-006-0465-8

    Article  CAS  PubMed  Google Scholar 

  12. Devi VS, Mittl PRE (2011) Monitoring the disulfide bond formation of a cysteine-rich repeat protein from helicobacter pylori in the periplasm of Escherichia coli. Curr Microbiol 62:903–907. https://doi.org/10.1007/s00284-010-9803-2

    Article  CAS  PubMed  Google Scholar 

  13. Raran-Kurussi S, Waugh DS (2012) The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 7:e49589. https://doi.org/10.1371/journal.pone.0049589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of expression in Escherichia coli. Science 324:255–258. https://doi.org/10.1126/science.1170160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13. https://doi.org/10.1016/j.pep.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  16. Kapust RB, Toözseór J, Copeland TD, Waugh DS (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955. https://doi.org/10.1016/S0006-291X(02)00574-0

    Article  CAS  PubMed  Google Scholar 

  17. Becker S, Terlau H (2008) Toxins from cone snails: properties, applications and biotechnological production. Appl Microbiol Biotechnol 79:1–9. https://doi.org/10.1007/s00253-008-1385-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matan Geron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geron, M. (2020). Production and Purification of Recombinant Toxins. In: Priel, A. (eds) Snake and Spider Toxins. Methods in Molecular Biology, vol 2068. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9845-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9845-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9844-9

  • Online ISBN: 978-1-4939-9845-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics