Skip to main content

Predicting Protein–Protein Interactions Using SPRINT

  • Protocol
  • First Online:
Protein-Protein Interaction Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

Understanding protein–protein interactions (PPIs) is vital to reveal the function mechanisms in cells. Thus, predicting and identifying PPIs is one of the fundamental problems in system biology. Various high-throughput experimental and computation methods have been developed to predict PPIs. Here, we provide a straightforward guide of using the program “SPRINT” to predict the PPIs on an interactome level in an organism. First, some installation guides and input file formats are described. Then, the commands and options to run SPRINT are discussed with examples. In addition, some notes on possible extended installation and usage of SPRINT are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonetta L (2010) Protein–protein interactions: interactome under construction. Nature 468(7325):851

    Article  CAS  Google Scholar 

  2. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ (2012) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41(D1):D1228–D1233

    Article  Google Scholar 

  3. Chatr-Aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2006) Mint: the molecular interaction database. Nucleic Acids Res 35(suppl_1):D572–D574

    Google Scholar 

  4. Consortium U et al (2014) Uniprot: a hub for protein information. Nucleic Acids Res p. gku989. https://doi.org/10.1093/nar/gku989

  5. Ding Y, Tang J, Guo F (2016) Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC Bioinf 17(1):398

    Article  Google Scholar 

  6. Fields S, Song OK (1989) A novel genetic system to detect protein protein interactions. Nature 340(6230):245–246

    Article  CAS  Google Scholar 

  7. Guo Y, Yu L, Wen Z, Li M (2008) Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences. Nucleic Acids Res 36(9):3025–3030

    Article  CAS  Google Scholar 

  8. Hamp T, Rost B (2015) Evolutionary profiles improve protein–protein interaction prediction from sequence. Bioinformatics 31(12):1945–1950

    Article  CAS  Google Scholar 

  9. Huang YA, You ZH, Chen X, Chan K, Luo X (2016) Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinf 17(1):184

    Article  Google Scholar 

  10. Ilie L, Ilie S (2007) Multiple spaced seeds for homology search. Bioinformatics 23(22):2969–2977

    Article  CAS  Google Scholar 

  11. Ilie L, Ilie S, Bigvand AM (2011) Speed: fast computation of sensitive spaced seeds. Bioinformatics 27(17):2433–2434

    Article  CAS  Google Scholar 

  12. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R et al (2006) Intact–open source resource for molecular interaction data. Nucleic Acids Res 35(Suppl_1):D561–D565

    Google Scholar 

  13. Keshava Prasad T, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A et al (2008) Human protein reference database–2009 update. Nucleic Acids Res 37(Suppl_1):D767–D772

    Google Scholar 

  14. Li Y, Ilie L (2017) Sprint: ultrafast protein-protein interaction prediction of the entire human interactome. BMC Bioinf 18(1):485

    Article  Google Scholar 

  15. Martin S, Roe D, Faulon JL (2005) Predicting protein–protein interactions using signature products. Bioinformatics 21(2):218–226

    Article  CAS  Google Scholar 

  16. Schoenrock A, Dehne F, Green JR, Golshani A, Pitre S (2011) Mp-pipe: a massively parallel protein-protein interaction prediction engine. In: Proceedings of the international conference on supercomputing. ACM, New York, pp 327–337

    Google Scholar 

  17. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H (2007) Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci 104(11):4337–4341

    Article  CAS  Google Scholar 

  18. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X et al (2010) The biogrid interaction database: 2011 update. Nucleic Acids Res 39(Suppl_1):D698–D704

    Google Scholar 

  19. Sun T, Zhou B, Lai L, Pei J (2017) Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinf 18(1):277

    Article  Google Scholar 

  20. Suter B, Kittanakom S, Stagljar I (2008) Two-hybrid technologies in proteomics research. Curr Opin Biotechnol 19(4), 316–323

    Article  CAS  Google Scholar 

  21. Szklarczyk D, Jensen LJ (2015) Protein-protein interaction databases. In: Protein-protein interactions. Springer, Berlin, pp 39–56

    Google Scholar 

  22. You ZH, Lei YK, Zhu L, Xia J, Wang B (2013) Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinf 14:S10. BioMed Central

    Google Scholar 

  23. You ZH, Zhu L, Zheng CH, Yu HJ, Deng SP, Ji Z (2014) Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinf 15:S9. BioMed Central

    Google Scholar 

  24. Yu CY, Chou LC, Chang DTH (2010) Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC Bioinf 11(1):167

    Article  Google Scholar 

  25. Yu J, Guo M, Needham CJ, Huang Y, Cai L, Westhead DR (2010) Simple sequence-based kernels do not predict protein–protein interactions. Bioinformatics 26(20):2610–2614

    Article  CAS  Google Scholar 

  26. Zahiri J, Yaghoubi O, Mohammad-Noori M, Ebrahimpour R, Masoudi-Nejad A (2013) Ppievo: protein–protein interaction prediction from PSSM based evolutionary information. Genomics 102(4):237–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.I. has been partially supported by a Discovery Grant and a Research Tools and Instruments Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). We would like to thank the support from Robert and Ruth Lumsden Graduate Awards that is awarded to Y.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Ilie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Ilie, L. (2020). Predicting Protein–Protein Interactions Using SPRINT. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics