Skip to main content

Derivation of Primary Mouse Embryonic Fibroblast (PMEF) Cultures

  • Protocol
  • First Online:
Mouse Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 633))

Abstract

Primary mouse embryonic fibroblasts (PMEFs) have a number of properties that make them an attractive cell culture model. Relative to other primary explant cultures they are easy to establish and maintain, proliferate rapidly and, as a result, large numbers of cells can be produced from a single embryo within several days following explantation. This allows, for instance, for ready comparison of wild-type and knockout cells derived from the same litter of animals. PMEFs can be expanded through several passages before they reach crisis and can be used to establish cell lines following spontaneous transformation or following derivation from strains carrying mutations, such as in the gene encoding the tumour suppressor Trp53. They have been widely used as feeders to support other cultured cell types, notably embryonic stem cells, as well as for the study of a diverse range of cellular phenomena using microscopic, biochemical and molecular biological techniques. Here, we describe a simple and reliable method for the derivation and maintenance of PMEFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keshishian, H. (2004) Ross Harrison’s “The outgrowth of the nerve fiber as a model of protoplasmic movement”. J. Exp. Zool. 301A, 201–203.

    Article  Google Scholar 

  2. Van Gansen, P., and Van Lerberghe, N. (1988) Potential and limitations of cultivated fibroblasts in the study of senescence in animals. A review of the murine skin fibroblast system. Arch. Gerontol. Geriatr. 7, 31–74.

    Article  PubMed  Google Scholar 

  3. Hoki, Y., Araki, R., Fujimori, A., Ohhata, T., Koseki, H., Fukumura, R., Nakamura, M., Takahashi, H., Noda, Y., Kito, S., and Abe, M. (2003) Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum. Mol. Genet. 12, 2293–2299.

    Article  CAS  PubMed  Google Scholar 

  4. Harvey, M., Sands, A. T., Weiss, R. S., Hegi, M. E., Wiseman, R. W., Pantazis, P., Giovanella, B. C., Tainsky, M. A., Bradley, A., and Donehower, L. A. (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2257–2267.

    Google Scholar 

  5. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Butel, J. S., and Bradley, A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.

    Article  CAS  PubMed  Google Scholar 

  6. Puck, T. T., and Marcus, P. I. (1955) A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc. Natl. Acad. Sci. (USA) 41, 432–437.

    Article  CAS  Google Scholar 

  7. Pantoja, C., de los Rios, L., Matheu, A., Antequera, F., and Serrano, M. (2005) Inactivation of imprinted genes induced by cellular stress and tumourigenesis. Cancer Res. 65, 26–33.

    CAS  PubMed  Google Scholar 

  8. Green, A. E., Athreya, B., Lehr, H. B., and Coriell, L. L. (1967) Viability of cell cultures following extended preservation in liquid nitrogen. Proc. Soc. Exp. Biol. Med. 124, 1302–1307.

    Google Scholar 

  9. Lovelock, J. E., and Bishop, M. W. H. (1983) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183, 1394–1395.

    Article  Google Scholar 

  10. Karrow, A. M., Jr. (1969) Cryoprotectants – a new class of drugs. J. Pharm. Pharmacol. 21, 209–223.

    Google Scholar 

  11. Leibo, S. P., and Mazur, P. (1971) The role of cooling rates in low-temperature preservation. Cryobiology 8, 447–452.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. A Ward, in whose lab these techniques have been utilised and for his assistance on the production of this chapter. Special thanks must also go to both Dr. Robert Kelsh and Dr. Ian Jones for their valued assistance with the microscopy and to Dr. David Tosh for the gift of the α-tubulin antibody.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garfield, A.S. (2010). Derivation of Primary Mouse Embryonic Fibroblast (PMEF) Cultures. In: Ward, A., Tosh, D. (eds) Mouse Cell Culture. Methods in Molecular Biology, vol 633. Humana Press. https://doi.org/10.1007/978-1-59745-019-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-019-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-772-3

  • Online ISBN: 978-1-59745-019-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics