Skip to main content

Autophagosome and Phagosome

  • Protocol
Autophagosome and Phagosome

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 445))

Summary

Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell’s own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine, B. (2007) Cell biology: autophagy and cancer. Nature 446:745–747.

    Article  CAS  PubMed  Google Scholar 

  2. Shintani, T., and Klionsky, D. J. (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995.

    Article  CAS  PubMed  Google Scholar 

  3. Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6:463–477.

    Article  CAS  PubMed  Google Scholar 

  4. Rubinsztein, D. C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786.

    Article  CAS  PubMed  Google Scholar 

  5. Schmid, D., Dengjel, J., Schoor, O., Stevanovic, S., and Munz, C. (2006) Autophagy in innate and adaptive immunity against intracellular pathogens. J. Mol. Med.:1–9.

    Google Scholar 

  6. Martinez-Vicente, M., and Cuervo, A. M. (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 6:352–361.

    Article  CAS  PubMed  Google Scholar 

  7. Deretic, V. (2005) Autophagy in innate and adaptive immunity. Trends Immunol. 26:523–528.

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima, N., and Klionsky, D. J. (2007) Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27:19–40.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimori, T. (2007) Autophagy: paying Charon’s toll. Cell 128:833–836.

    Article  CAS  PubMed  Google Scholar 

  10. Kamada, Y., Sekito, T., and Ohsumi, Y. (2004) Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr. Top. Microbiol. Immunol. 279:73–84.

    CAS  PubMed  Google Scholar 

  11. Fengsrud, M., Erichsen, E. S., Berg, T. O., Raiborg, D., and Seglen, P. O. (2000) Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur. J. Cell Biol. 79:871–882.

    Article  CAS  PubMed  Google Scholar 

  12. Young, A. R., Chan, E. Y., Hu, X. W., et al. (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:3888–3900.

    Article  CAS  PubMed  Google Scholar 

  13. Aderem, A., and Underhill, D. M. (1999) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17:593–623.

    Article  CAS  PubMed  Google Scholar 

  14. Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., et al. (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946.

    Article  CAS  PubMed  Google Scholar 

  15. Joiner, K. A., Fuhrman, S. A., Miettinen, H. M., Kasper, L. H., and Mellman, I (1990) Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249:641–646.

    Article  CAS  PubMed  Google Scholar 

  16. Cossart, P., and Sansonetti, P. J. (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248.

    Article  CAS  PubMed  Google Scholar 

  17. Gutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., and Deretic, V. (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766.

    Article  CAS  PubMed  Google Scholar 

  18. Singh, S. B., Davis, A. S., Taylor, G. A., and Deretic, V. (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441.

    Article  CAS  PubMed  Google Scholar 

  19. Alonso, S., Pethe, K., Russell, D. G., and Purdy, G. E. (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. USA 104:6031–6036.

    Article  CAS  PubMed  Google Scholar 

  20. Schmid, D., Pypaert, M., and Munz, C. (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92.

    Article  CAS  PubMed  Google Scholar 

  21. Ramachandra, L., Noss, E., Boom, W. H., and Harding, C. V. (2001) Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J. Exp. Med. 194:1421–1432.

    Article  CAS  PubMed  Google Scholar 

  22. Pizarro-Cerda, J., and Cossart, P. (2004) Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat. Cell Biol. 6:1026–1033.

    Article  CAS  PubMed  Google Scholar 

  23. Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S., and Deretic, V. (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154:631–644.

    Article  CAS  PubMed  Google Scholar 

  24. Vieira, O. V., Botelho, R. J., Rameh, L., et al. (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinase in phagosome formation and maturation. J. Cell Biol. 155:19–25.

    Article  CAS  PubMed  Google Scholar 

  25. Vieira, O. V., Botelho, R. J., and Grinstein, S. (2002) Phagosome maturation: aging gracefully. Biochem. J. 366:689–704.

    CAS  PubMed  Google Scholar 

  26. Pattingre, S., Tassa, A., Qu, X., et al. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, C., Feng, P., Ku, B., et al. (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 8:688–699.

    Article  CAS  PubMed  Google Scholar 

  28. Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124:471–484.

    Article  CAS  PubMed  Google Scholar 

  29. Meley, D., Bauvy, C., Houben-Weerts, J. H., et al. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem.281:34870–34879.

    Article  CAS  PubMed  Google Scholar 

  30. Sofer, A., Lei, K., Johannessen, C. M., and Ellisen, L. W. (2005) Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell Biol. 25:5834–5845.

    Article  CAS  PubMed  Google Scholar 

  31. Hoyer-Hansen, M., Bastholm, L., Szyniarowski, P., et al. (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25:193–205.

    Article  PubMed  Google Scholar 

  32. Hsu, Y. C., Chern, J. J., Cai, Y., Liu, M., and Choi, K. W. (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785–788.

    Article  CAS  PubMed  Google Scholar 

  33. Byfield, M. P., Murray, J. T., and Backer, J. M. (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280:33076–33082.

    Article  CAS  PubMed  Google Scholar 

  34. Nobukuni, T., Joaquin, M., Roccio, M., et al. (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA 102:14238–14243.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The editor wishes to thank immensely Michal Mudd. She has tirelessly played a pivotal role at all stages of bringing this project to a conclusion. This work was supported by NIH grants AI069345, AI45148, and AI42999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojo Deretic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deretic, V. (2008). Autophagosome and Phagosome. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics