Skip to main content

Comparative Modeling of Proteins

  • Protocol
Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

Three-dimensional analysis of protein structures is proving to be one of the most fruitful modes of biological and medical discovery in the early 21st century, providing fundamental insight into many (perhaps most) biochemical functions of relevance to the cause and treatment of diseases. Fully realizing such insight, however, would require analysis of too many distinct proteins for thorough laboratory analysis of all proteins to be feasible, thus, any method capable of accurate, efficient in silico structure prediction should prove highly expeditious. The technique generally acknowledged to provide the most accurate protein structure predictions, called comparative modeling, has, thus, attracted substantial attention and is the focus of this chapter. Although other reviews have reported on the method development and research history of comparative modeling, our discussion herein focuses on the general philosophy of the method and specific strategies for successfully achieving reliable and accurate models. The chapter, thus, relates aspects of template selection, sequence alignment, spatial alignment, loop and gap modeling, side chain modeling, structural refinement, and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., and Phillips, D.C. (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 181, 662–666.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Baker, D. and Šali, A. (2001) Protein structure prediction and structural genomics. Science. 294, 93–96.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Martí-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, R., and Sali A. (2000) Comparative protein structure modeling of genes and genomes.Biomol. Struct. 29, 291–325.

    Article  Google Scholar 

  4. 4. Anfinsen, C.B., Redfield, R.R., Choate, W.I., Page, J., and Carroll, W.R. (1965) Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J. Biol. Chem. 207, 201–210.

    Google Scholar 

  5. 5. Dayhoff, M.O. (1972) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Georgetown University, Washington DC.

    Google Scholar 

  6. 6. Chothia, C. (1992) Proteins. One thousand families for the molecular biologist. Nature. 357, 543–544.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Prusiner, S.B. (1991) Molecular biology of prion diseases. Science. 252, 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Takagi, F., Koga, N., and Takada, S. (2003) How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Mol. Sim. Proc. Natl. Acad. Sci. USA. 100, 11367– 11372.

    Article  CAS  Google Scholar 

  9. 9. Baumketner, A., Jewett, A., and Shea, J.E. (2003) Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332, 701–713.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Rost, B. (2001) Protein secondary structure prediction continues to rise. J. Struct. Biol. 134, 204–218.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Chothia, C. and Lesk, A.M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826.

    CAS  PubMed  Google Scholar 

  12. Chung, S.Y. and Subbiah, S. (1996) How similar must a template protein be for homology modeling by side-chain packing methods? Pac. Symp. Biocomput. 126–141.

    Google Scholar 

  13. 13. Forrest, L.R., Tang, C.L., and Honig, B. (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 91, 508–517.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R., Grant, A., Lee, D., Akpor, A., Maibaum, M., Harrison, A., Dallman, T., Reeves, G., Diboun, I., Addou, S., Lise, S., Johnston, C., Sillero, A., Thornton, J., and Orengo, C. (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucl. Acids Res. 33, D247–D251.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Dongsup, K., Xu, D., Guo, J.T., Elrott, K., and Xi, Y. (2003) PROSPECT II: protein structure prediction program for genome-scale applications. Prot. Eng. 16, 641–650.

    Article  Google Scholar 

  16. 16. Fernandez-Fuentes, N., Oliva, B., and Fiser, A. (2006) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucl. Acids Res. 34, 2085–2097.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Kolodny, R., Koehl, P., Guibas, L., and Levitt, M. (2002) Small libraries of protein fragments model native protein structures accurately. J. Mol. Biol. 323, 297–307.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Sutcliffe, M.J., Haneef, I., Carney, D., and Blundell, T.L. (1987) Knowledge-based modelling of homologous proteins. Part I. Three dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1, 377–384.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Levitt, M. (1992) Accurate modeling of protein conformation by automatic segment matching. J. Mol. Biol. 226, 507–533.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Šali, A. and Blundell, T.L. (1993) Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.

    Article  PubMed  Google Scholar 

  21. 21. Lushington, G.H., Zaidi, A., and Michaelis, M.L. (2005) Theoretically predicted structures of plasma membrane Ca2+-ATPase and their susceptibilities to oxidation. J. Mol. Graph. Modeling 24, 175–185.

    Article  CAS  Google Scholar 

  22. 22. Tovchigrechko, A. and Vakser, I.A. (2005) Development and testing of an automated approach to protein docking. Proteins. 60, 296–301.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Wiehe, K., Pierce, B., Mintseris, J., Tong, W., Anderson, R., Chen, R., and Weng, Z. (2005) ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins. 60, 207–221.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Chung, S.Y. and Subbiah, S. (1996) A structural explanation for the twilight zone of protein sequence homology. Structure. 4, 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Huang, E.S., Koehl, P., Leavitt, M., Pappu, R.V., and Ponder, J.W. (1998) Accuracy of side-chain prediction upon the near-native protein backbones developed by ab initio folding methods. Proteins. 33, 204–217.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Caflisch, A. and Paci, E. (2005) Molecular dynamics simulations to study protein folding and unfolding. Protein Folding Handbook. 2, 1143–1169.

    Article  CAS  Google Scholar 

  27. 27. Karplus, M. and Kuriyan, J. (2005) Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA. 102, 6679–6685.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Im, W. and Brooks, C.L., III. (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA. 102, 6771–6776.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lushington, G.H. (2008). Comparative Modeling of Proteins. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics