Skip to main content

Detection of Protein-Protein Interactions in Live Cells and Animals with Split Firefly Luciferase Protein Fragment Complementation

  • Protocol
Genomics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 439))

Abstract

Protein fragment complementation has emerged as a powerful tool for measuring protein-protein interactions in the context of live cells. The adaptation of this strategy for use with firefly luciferase now allows for the non-invasive, quantitative, real-time readout of protein interactions in lysates, live cells, and whole animals. Bioluminescence provides a robust imaging modality due to its extremely low background signal and large dynamic range. The split luciferase fusion constructs described here are inducible by addition of ligands, small molecules or drugs, in this example, rapamycin, and have been shown to work in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Toby G, Golemis E (2001) Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. Methods 24:201–217

    Article  CAS  PubMed  Google Scholar 

  2. 2. Luker K, Piwnica-Worms D (2004) Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymol 385:349–360

    Article  CAS  PubMed  Google Scholar 

  3. 3. Rossi F, Charlton C, Blau H (1997) Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci USA 94:8405–8410

    Article  CAS  PubMed  Google Scholar 

  4. 4. Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM (2002) Protein-protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments. Proc Natl Acad Sci USA 99:3469–3474

    Article  CAS  PubMed  Google Scholar 

  5. 5. Remy I, Michnick S (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA 96:5394–5399

    Article  CAS  PubMed  Google Scholar 

  6. 6. Remy I, Wilson I, Michnick S (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283:990–993

    Article  CAS  PubMed  Google Scholar 

  7. 7. Galarneau A, Primeau M, Trudeau L-E, Michnick S (2002) b-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein-protein interactions. Nat Biotechnol 20:619–622

    Article  CAS  PubMed  Google Scholar 

  8. 8. Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73:2516–2521

    Article  CAS  PubMed  Google Scholar 

  9. 9. Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101:12288–12293

    Article  CAS  PubMed  Google Scholar 

  10. 10. Ozawa T, Umezawa Y (2001) Detection of protein-protein interactions in vivo based on protein splicing. Curr Opin Chem Biol 5:578–583

    Article  CAS  PubMed  Google Scholar 

  11. 11. Ozawa T, Nogami S, Sato M, Ohya Y, Umezawa Y (2000) A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem 72:5151–5157

    Article  CAS  PubMed  Google Scholar 

  12. 12. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  PubMed  Google Scholar 

  13. 13. Kaihara A, Kawai Y, Sato M, Ozawa T, Umezawa Y (2003) Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Anal Chem 75:4176–4181

    Article  CAS  PubMed  Google Scholar 

  14. 14. Kim SB, Ozawa T, Watanabe S, Umezawa Y (2004) High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc Natl Acad Sci USA 101:11542–11547

    Article  CAS  PubMed  Google Scholar 

  15. 15. Paulmurugan R, Gambhir SS (2005) Firefly luciferase enzyme fragment complementation for imaging in cells and living animals. Anal Chem 77:1295–1302

    Article  CAS  PubMed  Google Scholar 

  16. 16. Paulmurugan R, Gambhir S (2003) Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal Chem 75:1584–1589

    Article  CAS  PubMed  Google Scholar 

  17. 17. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230

    Article  CAS  PubMed  Google Scholar 

  18. 18. Pichler A, Prior J, Piwnica-Worms D (2004) Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 101:1702–1707

    Article  CAS  PubMed  Google Scholar 

  19. 19. Tarpey M, White C, Suarez E, Richardson G, Radi R, Freeman B (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211

    CAS  PubMed  Google Scholar 

  20. 20. Chen J, Zheng X, Brown E, Schreiber S (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92:4947–4951

    Article  CAS  PubMed  Google Scholar 

  21. 21. Ostermeier M, Nixon A, Shim J, Benkovic S (1999) Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci USA 96:3562–3567

    Article  CAS  PubMed  Google Scholar 

  22. 22. Wolff JA, and Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20

    CAS  PubMed  Google Scholar 

  23. 23. Hagstrom JE (2003) Plasmid-based gene delivery to target tissues in vivo: The intravascular approach. Curr Opin Mol Ther 5:338–344

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to colleagues at the Molecular Imaging Center for valuable discussions. This educational project was supported by NIH grant P50 CA94056.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Villalobos, V., Naik, S., Piwnica-Worms, D. (2008). Detection of Protein-Protein Interactions in Live Cells and Animals with Split Firefly Luciferase Protein Fragment Complementation. In: Starkey, M., Elaswarapu, R. (eds) Genomics Protocols. Methods in Molecular Biology™, vol 439. Humana Press. https://doi.org/10.1007/978-1-59745-188-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-188-8_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-871-3

  • Online ISBN: 978-1-59745-188-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics