Skip to main content

Directed Alteration of Saccharomyces cerevisiae Mitochondrial DNA by Biolistic Transformation and Homologous Recombination

  • Protocol
Mitochondria

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Saccharomyces cerevisiae is currently the only species in which genetic transformation of mitochondria can be used to generate a wide variety of defined alterations in mitochondrial deoxyribonucleic acid (mtDNA). DNA sequences can be delivered into yeast mitochondria by microprojectile bombardment (biolistic transformation) and subsequently incorporated into mtDNA by the highly active homologous recombination machinery present in the organelle. Although transformation frequencies are relatively low, the availability of strong mitochondrial selectable markers for the yeast system, both natural and synthetic, makes the isolation of transformants routine. The strategies and procedures reviewed here allow the researcher to insert defined mutations into endogenous mitochondrial genes and to insert new genes into mtDNA. These methods provide powerful in vivo tools for the study of mitochondrial biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox, T. D., Sanford, J. C., and McMullin, T. W. (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc. Natl. Acad. Sci. U.S.A. 85, 7288–7292.

    Article  CAS  PubMed  Google Scholar 

  2. Bonnefoy, N. and Fox, T. D. (2000) In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8 m reveals lack of downstream reinitiation. Mol. Gen. Genet. 262, 1036–1046.

    Article  CAS  PubMed  Google Scholar 

  3. Bonnefoy, N., Bsat, N., and Fox, T. D. (2001) Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide. Mol. Cell Biol. 21, 2359–2372.

    Article  CAS  PubMed  Google Scholar 

  4. Conde, J. and Fink, G. R. (1976) A mutant of S. cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73, 3651–3655.

    Article  CAS  PubMed  Google Scholar 

  5. Johnston, S. A., Anziano, P. Q., Shark, K., Sanford, J. C., and Butow, R. A. (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240, 1538–1541.

    Article  CAS  PubMed  Google Scholar 

  6. Steele, D. F., Butler, C. A., and Fox, T. D. (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc. Natl. Acad. Sci. USA 93, 5253–5257.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnefoy, N. and Fox, T. D. (2001) Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol. 65, 381–396.

    Article  CAS  PubMed  Google Scholar 

  8. Hill, J. E., Myers, A. M., Koerner, T. J., and Tzagoloff, A. (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2, 163–167.

    Article  CAS  PubMed  Google Scholar 

  9. Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    CAS  PubMed  Google Scholar 

  10. Butow, R. A., Henke, M., Moran, J. V., Belcher, S. M., and Perlman, P. S. (1996) Transformation of Saccharomyces cerevisiae mitochondria by the biolistic gun. Meth. Enzymol. 264, 265–278.

    Article  CAS  PubMed  Google Scholar 

  11. Neff, N. F., Thomas, J. H., Grisafi, P., and Botstein, D. (1983) Isolation of theβ-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33, 211–219.

    Article  CAS  PubMed  Google Scholar 

  12. Costanzo, M. C. and Fox, T. D. (1993) Suppression of a defect in the 5′-untranslated leader of the mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol. Cell. Biol. 13, 4806–4813.

    CAS  PubMed  Google Scholar 

  13. Thomas, B. J. and Rothstein, R. (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630.

    Article  CAS  PubMed  Google Scholar 

  14. Azpiroz, R. and Butow, R. A. (1993) Patterns of mitochondrial sorting in yeast zygotes. Mol. Biol. Cell 4, 21–36.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bonnefoy, N., Fox, T.D. (2007). Directed Alteration of Saccharomyces cerevisiae Mitochondrial DNA by Biolistic Transformation and Homologous Recombination. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics