Skip to main content

Protein Stabilization by the Rational Design of Surface Charge–Charge Interactions

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The design of proteins with increased stability has many important applications in biotechnology. In recent years, strategies involving directed evolution, sequence-based design, or computational design have proven successful for generating stabilized proteins. A brief overview of the various methods that have been used to increase protein stability is presented, followed by a detailed example of how the rational design of surface charge–charge interactions has provided a robust method for protein stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv Protein Chem 14, 1–63.

    Article  PubMed  CAS  Google Scholar 

  2. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry 29, 7133–155.

    Article  PubMed  CAS  Google Scholar 

  3. Matthews, B. W. (1995). Studies on protein stability with T4 lysozyme. Adv Protein Chem 46, 249–278.

    Article  PubMed  CAS  Google Scholar 

  4. Serrano, L., Kellis, J. T., Jr., Cann, P., et al. (1992). The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol 224, 783–804.

    Article  PubMed  CAS  Google Scholar 

  5. Makhatadze, G. I., Privalov, P. L. (1995). Energetics of protein structure. Adv Protein Chem 47, 307–425.

    Article  PubMed  CAS  Google Scholar 

  6. Desjarlais, J. R., Handel, T. M. (1995). De novo design of the hydrophobic cores of proteins. Protein Sci 4, 2006–2018.

    Article  PubMed  CAS  Google Scholar 

  7. Lazar, G. A., Desjarlais, J. R., Handel, T. M. (1997). De novo design of the hydrophobic core of ubiquitin. Protein Sci 6, 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  8. Loladze, V. V., Ermolenko, D. N., Makhatadze, G. I. (2002). Thermodynamic consequences of burial of polar and non-polar amino acid residues in the protein interior. J Mol Biol 320, 343–357.

    Article  PubMed  CAS  Google Scholar 

  9. Pace, C. N., Shirley, B. A., McNutt, M., et al. (1996). Forces contributing to the conformational stability of proteins. Faseb J 10, 75–83.

    PubMed  CAS  Google Scholar 

  10. Griko, Y. V., Makhatadze, G. I., Privalov, P. L., et al. (1994). Thermodynamics of barnase unfolding. Protein Sci 3, 669–676.

    Article  PubMed  CAS  Google Scholar 

  11. Loladze, V. V., Ibarra-Molero, B., Sanchez-Ruiz, J. M., et al. (1999). Engineering a thermostable protein via optimization of charge–charge interactions on the protein surface. Biochemistry 38, 16419–16423.

    Google Scholar 

  12. Grimsley, G. R., Shaw, K. L., Fee, L. R., et al. (1999). Increasing protein stability by altering long-range Coulombic interactions. Protein Sci 8, 1843–1849.

    Article  PubMed  CAS  Google Scholar 

  13. Spector, S., Wang, M., Carp, S. A., et al. (2000). Rational modification of protein stability by the mutation of charged surface residues. Biochemistry 39, 872–879.

    Article  PubMed  CAS  Google Scholar 

  14. Perl, D., Mueller, U., Heinemann, U., et al. (2000). Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol 7, 380–383.

    Article  PubMed  CAS  Google Scholar 

  15. Makhatadze, G. I., Loladze, V. V., Gribenko, A. V., et al. (2004). Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. J Mol Biol 336, 929–942.

    Article  PubMed  CAS  Google Scholar 

  16. Strickler, S. S., Gribenko, A. V., Gribenko, A. V., et al.. (2006). Protein stability and surface electrostatics: a charged relationship. Biochemistry 45, 2761–2766.

    Article  PubMed  CAS  Google Scholar 

  17. Loladze, V. V., Ermolenko, D. N., Makhatadze, G. I. (2001). Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci 10, 1343–1352.

    Article  PubMed  CAS  Google Scholar 

  18. Farinas, E. T., Bulter, T., Arnold, F. H. (2001). Directed enzyme evolution. Curr Opin Biotechnol 12, 545–551.

    Article  PubMed  CAS  Google Scholar 

  19. Bloom, J. D., Meyer, M. M., Meinhold, P., et al. (2005). Evolving strategies for enzyme engineering. Curr Opin Struct Biol 15, 447–452.

    Article  PubMed  CAS  Google Scholar 

  20. Kumar, S., Chen, C. S., Waxman, D. J., et al. (2005). Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. J Biol Chem 280, 19569–19575.

    Google Scholar 

  21. Morawski, B., Quan, S., Arnold, F. H. (2001). Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol Bioeng 76, 99–107.

    Article  PubMed  CAS  Google Scholar 

  22. Giver, L., Gershenson, A., Freskgard, P. O., et al. (1998). Directed evolution of a thermostable esterase. Proc Natl Acad Sci USA 95, 12809–12813.

    Google Scholar 

  23. Hill, C. M., Li, W. S., Thoden, J. B., et al. (2003). Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. J Am Chem Soc 125, 8990–8991.

    Article  PubMed  CAS  Google Scholar 

  24. Ness, J. E., Welch, M., Giver, L., et al. (1999). DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol 17, 893–896.

    Article  PubMed  CAS  Google Scholar 

  25. Bulter, T., Alcalde, M., Sieber, V., et al. (2003). Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69, 987–995.

    Article  PubMed  CAS  Google Scholar 

  26. Cherry, J. R., Lamsa, M. H., Schneider, P., et al. (1999). Directed evolution of a fungal peroxidase. Nat Biotechnol 17, 379–384.

    Article  PubMed  CAS  Google Scholar 

  27. Murashima, K., Kosugi, A., Doi, R. H. (2002). Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol 45, 617–626.

    Article  PubMed  CAS  Google Scholar 

  28. Hopfner, K. P., Kopetzki, E., Kresse, G. B., et al. (1998). New enzyme lineages by subdomain shuffling. Proc Natl Acad Sci USA 95, 9813–9818.

    Article  PubMed  CAS  Google Scholar 

  29. Wintrode, P. L., Arnold, F. H. (2000). Temperature adaptation of enzymes: lessons from laboratory evolution. Adv Protein Chem 55, 161–225.

    Article  PubMed  CAS  Google Scholar 

  30. Sieber, V., Pluckthun, A., Schmid, F. X. (1998). Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16, 955–960.

    Article  PubMed  CAS  Google Scholar 

  31. Martin, A., Sieber, V., Schmid, F. X. (2001). In-vitro selection of highly stabilized protein variants with optimized surface. J Mol Biol 309, 717–726.

    Article  PubMed  CAS  Google Scholar 

  32. Wunderlich, M., Schmid, F. X. (2006). In vitro evolution of a hyperstable Gbeta1 variant. J Mol Biol 363, 545–557.

    Article  PubMed  CAS  Google Scholar 

  33. Finucane, M. D., Tuna, M., Lees, J. H., et al. (1999). Core-directed protein design. I. An experimental method for selecting stable proteins from combinatorial libraries. Biochemistry 38, 11604–11612.

    Google Scholar 

  34. Finucane, M. D., Woolfson, D. N. (1999). Core-directed protein design. II. Rescue of a multiply mutated and destabilized variant of ubiquitin. Biochemistry 38, 11613–11623.

    Google Scholar 

  35. Perl, D., Schmid, F. X. (2001). Electrostatic stabilization of a thermophilic cold shock protein. J Mol Biol 313, 343–357.

    Article  PubMed  CAS  Google Scholar 

  36. Brockmann, E. C., Cooper, M., Stromsten, N., et al. (2005). Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J Immunol Methods 296, 159–170.

    Article  PubMed  CAS  Google Scholar 

  37. Wunderlich, M., Martin, A., Schmid, F. X. (2005). Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions. J Mol Biol 347, 1063–1076.

    Article  PubMed  CAS  Google Scholar 

  38. Wunderlich, M., Martin, A., Staab, C. A., et al. (2005). Evolutionary protein stabilization in comparison with computational design. J Mol Biol 351, 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  39. Tao, H., Cornish, V. W. (2002). Milestones in directed enzyme evolution. Curr Opin Chem Biol 6, 858–864.

    Article  PubMed  CAS  Google Scholar 

  40. Fukuchi, S., Nishikawa, K. (2001). Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309, 835–843.

    Article  PubMed  CAS  Google Scholar 

  41. Alsop, E., Silver, M., Livesay, D. R. (2003). Optimized electrostatic surfaces parallel increased thermostability: A structural bioinformatic analysis. Protein Eng 16, 871–874.

    Article  PubMed  CAS  Google Scholar 

  42. Watanabe, K., Ohkuri, T., Yokobori, S., et al. (2006). Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. J Mol Biol 355, 664–674.

    Article  PubMed  CAS  Google Scholar 

  43. Neuwald, A. F., Liu, J. S., Lipman, D. J., et al. (1997). Extracting protein alignment models from the sequence database. Nucleic Acids Res 25, 1665–1677.

    Article  PubMed  CAS  Google Scholar 

  44. Shaw, E., Dordick, J. S. (2002). Predicting amino acid residues responsible for enzyme specificity solely from protein sequences. Biotechnol Bioeng 79, 295–300.

    Article  PubMed  CAS  Google Scholar 

  45. DiTursi, M. K., Kwon, S. J., Reeder, P. J., et al. (2006). Bioinformatics-driven, rational engineering of protein thermostability. Protein Eng Des Sel 19, 517–524.

    Article  PubMed  CAS  Google Scholar 

  46. Berezovsky, I. N., Shakhnovich, E. I. (2005). Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA 102, 12742–12747.

    Google Scholar 

  47. DeGrado, W. F., Summa, C. M., Pavone, V., et al. (1999). De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem 68, 779–819.

    Article  PubMed  CAS  Google Scholar 

  48. Street, A. G., Mayo, S. L. (1999). Computational protein design. Structure 7, R105–R109.

    Article  PubMed  CAS  Google Scholar 

  49. Pokala, N., Handel, T. M. (2001). Review: protein design – where we were, where we are, where we're going. J Struct Biol 134, 269–281.

    Article  PubMed  CAS  Google Scholar 

  50. Dantas, G., Kuhlman, B., Callender, D., et al. (2003). A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J Mol Biol 332, 449–460.

    Article  PubMed  CAS  Google Scholar 

  51. Korkegian, A., Black, M. E., Baker, D., et al. (2005). Computational thermostabilization of an enzyme. Science 308, 857–860.

    Article  PubMed  CAS  Google Scholar 

  52. Hurley, J. H., Baase, W. A., Matthews, B. W. (1992). Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol 224, 1143–1159.

    Article  PubMed  CAS  Google Scholar 

  53. Kuhlman, B., Baker, D. (2000). Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 97, 10383–10388.

    Article  Google Scholar 

  54. Predki, P. F., Agrawal, V., Brunger, A. T., et al. (1996). Amino-acid substitutions in a surface turn modulate protein stability. Nat Struct Biol 3, 54–58.

    Article  PubMed  CAS  Google Scholar 

  55. Nagi, A. D., Regan, L. (1997). An inverse correlation between loop length and stability in a four-helix-bundle protein. Fold Des 2, 67–75.

    Article  PubMed  CAS  Google Scholar 

  56. Fernandez, A. M., Villegas, V., Martinez, J. C., et al. (2000). Thermodynamic analysis of helix-engineered forms of the activation domain of human procarboxypeptidase A2. Eur J Biochem 267, 5891–5899.

    Article  PubMed  CAS  Google Scholar 

  57. Tanford, C., Kirkwood, J. G. (1957). Theory of protein titration curves. I. General equations for impenetrable spheres. J Am Chem Soc 79, 5333–5339.

    Article  CAS  Google Scholar 

  58. Matthew, J. B., Gurd, F. R., Garcia-Moreno, B., et al. (1985). pH-dependent processes in proteins. CRC Crit Rev Biochem 18, 91–197.

    Article  PubMed  CAS  Google Scholar 

  59. Matthew, J. B., Gurd, F. R. (1986). Stabilization and destabilization of protein structure by charge interactions. Meth Enzymol 130, 437–453.

    Article  PubMed  CAS  Google Scholar 

  60. Matthew, J. B., Gurd, F. R. (1986). Calculation of electrostatic interactions in proteins. Meth Enzymol 130, 413–436.

    Article  PubMed  CAS  Google Scholar 

  61. Richmond, T. J. (1984). Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. J Mol Biol 178, 63–89.

    Article  PubMed  CAS  Google Scholar 

  62. Ibarra-Molero, B., Loladze, V. V., Makhatadze, G. I., et al. (1999). Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge–charge interactions to protein stability. Biochemistry 38, 8138–8149.

    Article  PubMed  CAS  Google Scholar 

  63. Marti-Renom, M. A., Stuart, A. C., Fiser, A., et al. (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291–325.

    Article  PubMed  CAS  Google Scholar 

  64. Wintrode, P. L., Makhatadze, G. I., Privalov, P. L. (1994). Thermodynamics of ubiquitin unfolding. Proteins 18, 246–253.

    Article  PubMed  CAS  Google Scholar 

  65. Pace, C. N. (1986). Determination and analysis of urea and guanidine hydrochloride denaturation curves. Meth Enzymol 131, 266–280.

    Article  PubMed  CAS  Google Scholar 

  66. Strop, P., Mayo, S. L. (2000). Contribution of surface salt bridges to protein stability. Biochemistry 39, 1251–1255.

    Article  PubMed  CAS  Google Scholar 

  67. Sanchez-Ruiz, J. M., Makhatadze, G. I. (2001). To charge or not to charge? Trends Biotechnol 19, 132–135.

    CAS  Google Scholar 

  68. Chakrabartty, A., Doig, A. J., Baldwin, R. L. (1993). Helix capping propensities in peptides parallel those in proteins. Proc Natl Acad Sci USA 90, 11332–11336.

    Google Scholar 

  69. Doig, A. J., Baldwin, R. L. (1995). N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci 4, 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  70. Gong, Y., Zhou, H. X., Guo, M., et al. (1995). Structural analysis of the N- and C-termini in a peptide with consensus sequence. Protein Sci 4, 1446–1456.

    Article  PubMed  CAS  Google Scholar 

  71. Viguera, A. R., Serrano, L. (1995). Experimental analysis of the Schellman motif. J Mol Biol 251, 150–160.

    Article  PubMed  CAS  Google Scholar 

  72. Thomas, S. T., Loladze, V. V., Makhatadze, G. I. (2001). Hydration of the peptide backbone largely defines the thermodynamic propensity scale of residues at the C' position of the C-capping box of alpha-helices. Proc Natl Acad Sci USA 98, 10670–10675.

    Article  Google Scholar 

  73. Ermolenko, D. N., Thomas, S. T., Aurora, R., et al. (2002). Hydrophobic interactions at the Ccap position of the C-capping motif of alpha-helices. J Mol Biol 322, 123–135.

    Article  PubMed  CAS  Google Scholar 

  74. Marshall, S. A., Morgan, C. S., Mayo, S. L. (2002). Electrostatics significantly affect the stability of designed homeodomain variants. J Mol Biol 316, 189–199.

    Article  PubMed  CAS  Google Scholar 

  75. Permyakov, S. E., Makhatadze, G. I., Owenius, R., et al. (2005). How to improve nature: study of the electrostatic properties of the surface of alpha-lactalbumin. Protein Eng Des Sel 18, 425–433.

    Article  PubMed  CAS  Google Scholar 

  76. Zhou, H. X. (2002). A Gaussian-chain model for treating residual charge–charge interactions in the unfolded state of proteins. Proc Natl Acad Sci USA 99, 3569–3574.

    Article  PubMed  CAS  Google Scholar 

  77. Gribenko, A. V., Makhatadze, G. I. (2007). Role of the charge–charge interactions in defining stability and halophilicity of the CspB proteins. J Mol Biol 366, 842–856.

    Article  PubMed  CAS  Google Scholar 

  78. Ibarra-Molero, B., Sanchez-Ruiz, J. M. (2002). Genetic algorithm to design stabilizing surface-charge distributions in proteins. J Phys Chem B 106, 6609–6613.

    Article  CAS  Google Scholar 

  79. Godoy-Ruiz, R., Perez-Jimenez, R., Garcia-Mira, M. M., et al. (2005). Empirical parametrization of pK values for carboxylic acids in proteins using a genetic algorithm. Biophys Chem 115, 263–266.

    Article  PubMed  CAS  Google Scholar 

  80. Obitko, M. (1998). Genetic algorithms. http://cs.felk.cvut.cz/˜xobitko/ga/.

  81. Schweiker, K. L., Zarrine-Afsar, A., Davidson, A. R., et al. (2007). Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge–charge interactions. Protein Sci 16, 2694–2702.

    Google Scholar 

  82. Makhatadze, G. I. (1998). Measuring protein thermostability by differential scanning calorimetry, in (Wiley, T. J., ed.) Current Protocols in Protein Chemistry, 2. John Wiley & Sons, New York.

    Google Scholar 

  83. Lopez, M. M., Makhatadze, G. I. (2002). Differential scanning calorimetry. Methods Mol Biol 173, 113–119.

    PubMed  CAS  Google Scholar 

  84. Streicher, W. W., Makhatadze, G. I. (2007). Advances in the analysis of conformational transitions in peptides using differential scanning calorimetry. Meth Mol Biol 350, 105–113.

    CAS  Google Scholar 

  85. Gribenko, A. V., Patel, M . M., Makhatadze, G. I. (2008). to be published.

    Google Scholar 

  86. Lopez, M. M., Yutani, K., Makhatadze, G. I. (1999). Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. J Biol Chem 274, 33601–33608.

    Google Scholar 

  87. Lopez, M. M., Yutani, K., Makhatadze, G. I. (2001). Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template. J Biol Chem 276, 15511–15518.

    Article  Google Scholar 

  88. Schutz, C. N., Warshel, A. (2001). What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44, 400–417.

    Article  PubMed  CAS  Google Scholar 

  89. Warshel, A. (2003). Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Biophys Biomol Struct 32, 425–443.

    Article  PubMed  CAS  Google Scholar 

  90. Garcia-Moreno, E. B., Fitch, C. A. (2004). Structural interpretation of pH and salt-dependent processes in proteins with computational methods. Methods Enzymol 380, 20–51.

    Article  CAS  Google Scholar 

  91. Antosiewicz, J., McCammon, J. A., Gilson, M. K. (1994). Prediction of pH-dependent properties of proteins. J Mol Biol 238, 415–436.

    Article  PubMed  CAS  Google Scholar 

  92. Antosiewicz, J., McCammon, J. A., Gilson, M. K. (1996). The determinants of pKas in proteins. Biochemistry 35, 7819–7833.

    Article  PubMed  CAS  Google Scholar 

  93. Oliveberg, M., Arcus, V. L., Fersht, A. R. (1995). pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds. Biochemistry 34, 9424–9433.

    Article  PubMed  CAS  Google Scholar 

  94. Kuhlman, B., Luisi, D. L., Young, P., et al. (1999). pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions. Biochemistry 38, 4896–4903.

    Article  PubMed  CAS  Google Scholar 

  95. Cho, J. H., Raleigh, D. P. (2005). Mutational analysis demonstrates that specific electrostatic interactions can play a key role in the denatured state ensemble of proteins. J Mol Biol 353, 174–185.

    Article  PubMed  CAS  Google Scholar 

  96. Trefethen, J. M., Pace, C. N., Scholtz, J. M., et al. (2005). Charge–charge interactions in the denatured state influence the folding kinetics of ribonuclease Sa. Protein Sci 14, 1934–1938.

    Article  PubMed  CAS  Google Scholar 

  97. Fersht, A., Winter, G. (1992). Protein engineering. Trends Biochem Sci 17, 292–295.

    Article  PubMed  CAS  Google Scholar 

  98. Baldwin, E. P., Matthews, B. W. (1994). Core-packing constraints, hydrophobicity and protein design. Curr Opin Biotechnol 5, 396–402.

    Article  PubMed  CAS  Google Scholar 

  99. Loladze, V. V., Makhatadze, G. I. (2005). Both helical propensity and side-chain hydrophobicity at a partially exposed site in alpha-helix contribute to the thermodynamic stability of ubiquitin. Proteins 58, 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work on optimization of charge–charge interactions in proteins is supported by a grant from the National Science Foundation (MCB 0416746 to G.I.M.). K.L.S. is a recipient of NASA Graduate Student Researchers Program Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schweiker, K.L., Makhatadze, G.I. (2009). Protein Stabilization by the Rational Design of Surface Charge–Charge Interactions. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics