Skip to main content

A Method for Direct Measurement of Protein Stability In Vivo

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The stability of proteins is tuned by evolution to enable them to perform their cellular functions for the success of an organism. Yet, most of the arsenal of biophysical techniques at our disposal to characterize the thermodynamic stability of proteins is limited to in vitro samples. We describe an approach that we have developed to observe a protein directly in a cell and to monitor a fluorescence signal that reports the unfolding transition of the protein, yielding quantitatively interpretable stability data in vivo. The method is based on incorporation of structurally nonperturbing, specific binding motifs for a bis-arsenical fluorescein derivative in sites that result in dye fluorescence differences between the folded and unfolded states of the protein under study. This fluorescence labeling approach makes possible the determination of thermodynamic stability by direct urea titration in Escherichia coli cells. The specific case study we describe was carried out on the predominantly β-sheet intracellular lipid-binding protein, cellular retinoic acid-binding protein (CRABP), expressed in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiti, F., Stefani, M., Taddei, N., et al. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805–808.

    Article  PubMed  CAS  Google Scholar 

  2. Dobson, C. M. (2003) Protein folding and misfolding. Nature 426, 884–890

    Article  PubMed  CAS  Google Scholar 

  3. Evans, M. S., Clarke, T. F. IV, Clark, P. L. (2005) Conformations of co-translational folding intermediates. Protein Pept Lett 12, 189–195.

    Article  PubMed  CAS  Google Scholar 

  4. Minton, A. P. (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119, 2863–2869.

    Article  PubMed  CAS  Google Scholar 

  5. Pace, C. N., McGrath, T. (1980) Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J Biol Chem 255, 3862–3865.

    PubMed  CAS  Google Scholar 

  6. Frand, A. R., Cuozzo, J. W., Kaiser, C. A. (2000) Pathways for protein disulphide bond formation. Trends Cell Biol 10, 203–210.

    Article  PubMed  CAS  Google Scholar 

  7. Ghaemmaghami, S., Oas, T. G. (2001) Quantitative protein stability measurement in vivo. Nat Struct Biol 8, 879–882.

    Article  PubMed  CAS  Google Scholar 

  8. Park, C., Marqusee, S. (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat. Methods 2, 207–212.

    Article  PubMed  CAS  Google Scholar 

  9. Wigley, W. C., Stidham, R. D., Smith, N. M., et al. (2001) Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 19, 131–136.

    Article  PubMed  CAS  Google Scholar 

  10. Philipps, B., Hennecke, J., Glockshuber, R. (2003) FRET-based in vivo screening for protein folding and increased protein stability. J Mol Biol 327, 239–249.

    Article  PubMed  CAS  Google Scholar 

  11. Maxwell, K. L., Mittermaier, A. K., Forman-Kay, J. D., et al. (1999) A simple in vivo assay for increased protein solubility. Protein Sci 8, 1908–1911.

    Article  PubMed  CAS  Google Scholar 

  12. Ignatova, Z., Krishnan, B., Bombardier, J. P., et al. (2007) From the test tube to the cell: Exploring the folding and aggregation of a β-clam protein. Biopolymers 88,157–163.

    Article  PubMed  CAS  Google Scholar 

  13. Ignatova, Z., Gierasch, L. M. (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA 101, 523–528.

    Article  PubMed  CAS  Google Scholar 

  14. Clark, P. L., Weston, B. F., Gierasch, L. M. (1998) Probing the folding pathway of a beta-clam protein with single-tryptophan constructs. Fold. Des. 3, 401–412.

    Article  PubMed  CAS  Google Scholar 

  15. Griffin, B. A., Adams, S. R., Jones, J., Tsien, R. Y. (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol. 327, 565–578.

    Article  PubMed  CAS  Google Scholar 

  16. Eyles, S. J., Gierasch, L. M. (2000) Multiple roles of prolyl residues in structure and folding. J Mol Biol 301, 737–747.

    Article  PubMed  CAS  Google Scholar 

  17. Ignatova, Z., Gierasch, L. M. (2005) Aggregation of a slow-folding mutant of a β-clam protein proceeds through a monomeric nucleus. Biochemistry 44, 7266–7274.

    Article  PubMed  CAS  Google Scholar 

  18. Racher, K. I., Culham, D. E., Wood, J. M. (2001) Requirements for osmosensing and osmotic activation of transporter ProP from Escherichia coli. Biochemistry 40, 7324–7333.

    Article  PubMed  CAS  Google Scholar 

  19. Ignatova, Z., Gierasch, L. M. (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 103, 13357–13361.

    Article  PubMed  CAS  Google Scholar 

  20. Ignatova, Z., Gierasch, L. M. (2007) Effects of osmolytes on protein folding and aggregation in cells. Meth Enzymol 428, 355–372.

    Google Scholar 

  21. Fersht, A. (1999) Structure and Mechanism in Protein Science, Freeman, New York, pp. 508–539.

    Google Scholar 

  22. Pace, C. N., Shirley, B.A., Thompson, J.A. (1987) In (Creighton, T.E., ed.), Protein structure: A practical approach, IRL, Oxford pp. 311–330.

    Google Scholar 

Download references

Acknowledgments

We appreciate critical reading of the manuscript by Joanna Swain, Beena Krishnan, and Qinghua Wang. The authors gratefully acknowledge support from the National Institutes of Health (grants GM027616 and a 2006 NIH Director’s Pioneer Award to LMG), and DFG-project IG73/4-1 and the Heisenberg award IG73 1-1 (to ZI).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ignatova, Z., Gierasch, L.M. (2009). A Method for Direct Measurement of Protein Stability In Vivo. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics