Skip to main content

Protein Body Induction: A New Tool to Produce and Recover Recombinant Proteins in Plants

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

Stable accumulation of storage proteins, lipids and carbohydrates is a hallmark of the plant seed, and is a characteristic that is typically deficient in existing platforms for recombinant protein manufacture. One of the biological sequestration mechanisms that facilitate the folding, assembly and stabilization of plant seed storage proteins involve the de novo formation of unique intracellular organelles, the endoplasmic reticulum (ER)-derived protein bodies (PBs). In cereals, such as maize, PBs are formed directly in the lumen of the ER of endosperm cells and contain zeins, a group of polypeptides, which account for more than half of the total seed protein mass. The 27 kD γ zein protein localizes to the periphery of the PBs surrounding aggregates of other zeins (including a zein and δ zein). Heterologous expression of γ zein has been shown to result in the formation of PB-like structures, and the N-terminal proline-rich domain of γ zein (Zera®), containing eight PPPVHL repeats and a Pro-X sequence is by itself capable of directing ER retention and PB formation in non-seed tissues. We present a novel approach to produce recombinant proteins in plants based on the ability of γ zein-Zera domain to store recombinant proteins inside PBs. Zera domain fused to several proteins, including a enhanced cyan fluorescent protein (ECFP), calcitonin (Ct) and epidermal growth factor (EGF), were cloned into vectors for transient or stable transformation of tobacco plants. In tobacco leaves, we observed the formation of dense, ER-localized structures containing high concentrations of the respective target proteins. The intact synthetic organelles containing Zera fusions were readily isolated from cellular material using density-based separation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher, R., Stoger, E., Schillberg, S., Chris-tou, P. and Twyman, R.M. (2004) Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 1–7.

    Article  Google Scholar 

  2. Giddings, G. (2001) Transgenic plants as protein factories. Curr. Opin. Biotechnol. 12, 450–454.

    Article  CAS  PubMed  Google Scholar 

  3. Streatfield, S.J. (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5, 2–15.

    Article  CAS  PubMed  Google Scholar 

  4. Gomord, V., Chamberlain, P., Jef feris, R. and Faye, L. (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23, 559–565.

    Article  CAS  PubMed  Google Scholar 

  5. Xue, G.P., Patel, M., Johnson, J.S., Smyth, D.J. and Vickers, C.E. (2003) Selectable marker-free transgenic barley producing a high level of cellulase (1,4-β -glucanase) in developing grains. Plant Cell Rep. 21, 1088–1094.

    Article  CAS  PubMed  Google Scholar 

  6. Staub, J.M. and Maliga, P. (1995) Expres-sion of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J. 7, 845–848.

    Article  CAS  PubMed  Google Scholar 

  7. Gleba, Y., Klimyuk, V. and Marinollet, S. (2007) Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol. 18, 134–141.

    Article  CAS  PubMed  Google Scholar 

  8. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P. and Fischer, R. (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21, 570–578.

    Article  CAS  PubMed  Google Scholar 

  9. Takaiwa, F., Takagi, H., Hirose, S. and Wakasa, Y. (2007) Endosperm tissue is good production platform for artificial recom-binant proteins in transgenic rice. Plant Bio-technol. J. 5, 84–92.

    Article  CAS  PubMed  Google Scholar 

  10. Stoger, E., Ma, J.K., Fisher, R. and Chris-tou, P. (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16, 167–173.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-San Millan, A., Mingo-Castel, A., Miller, M. and Daniell, H. (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. 1, 77–79.

    Google Scholar 

  12. Tregoning, J.S., Nixon, P., Kuroda, H., Svab, Z., Clare, S., Bowe, F., Fairweather, N., Ytterberg, J., Van Wijk, K.J., Dou-gan, G. and Maliga, P. (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res. 31, 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  13. Shillberg, S., Zimmermann, S., Voss, A. and Fischer, R. (1999) Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Tans-genic Res. 8, 255–2633.

    Article  Google Scholar 

  14. Hadlington, J.L. and Denecke, J. (2000) Sorting of soluble proteins in the secretory pathway of plants. Curr. Opin. Plant Biol. 3, 461–468.

    Article  CAS  PubMed  Google Scholar 

  15. Kirst, M.E., Meyer, D.J., Gibbon, B., Jung, R. and Boston, R. (2005) Identification and characterization of endoplasmic reticulum-associated degradation proteins differentially affected by endoplasmic reticulum stress. Plant Physiol. 138, 218–231.

    Article  CAS  PubMed  Google Scholar 

  16. Ellgaard, L. and Helenius, A. (2003) Qual-ity control in the endoplasmic reticulum. Nat. Mol. Cell Biol. 4, 181–191.

    Article  CAS  Google Scholar 

  17. Tsai, B., Ye, Y. and Rapoport, T.A. (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 3, 246–255.

    Article  CAS  PubMed  Google Scholar 

  18. Munro, S. and Pelham, H.R. (1987) A C-terminal signal prevents secretion of lumi-nal ER proteins. Cell 48, 899–907.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, M.J., Sweet, D.J. and Pelham, H.R. (1990) The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61, 1359–1363.

    Article  CAS  PubMed  Google Scholar 

  20. Semenza, J.C., Hardwick, K.G., Dean, N. and Pelham, H.R. (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–57.

    Article  CAS  PubMed  Google Scholar 

  21. Ko, K., Tekoah, Y., Rudd, P.M., Harvey, D.J., Dwek, R.A., Spitsin, S., Hanlon, C.A., Rupprecht, C., Dietzschold, B., Golovkin, M. and Koprowski, H. (2003) Function and glycosilation of plant derived antiviral monoclonal antibody. Proc. Natl. Acad. Sci. USA 100, 8013–8018.

    Article  CAS  PubMed  Google Scholar 

  22. Schouten, A., Roosien, J., Van Engelen, F., De Jong, G., Borst-Vrenssen, A., Zilverent-ant, J., Bosch, D., Stiekema, W., Gommers, F., Schots, A. and Bakker, J. (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30, 781–793.

    Article  CAS  PubMed  Google Scholar 

  23. Frigerio, L., Pastres, A., Prada, A. and Vitale, A. (2001) Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: selective use of an alternative route to vacu-oles. Plant Cell 13, 1109–1126.

    Article  CAS  PubMed  Google Scholar 

  24. Pimpl, P., Taylor, J.P., Snowden, C., Hillmer, S., Robinson, D.G. and Denecke, J. (2006) Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway. Plant Cell 18, 198–211.

    Article  CAS  PubMed  Google Scholar 

  25. Herman, E.M. and Larkins, B. (1999) Pro-tein storage bodies and vacuoles. Plant Cell 11, 601–613.

    Article  CAS  PubMed  Google Scholar 

  26. Galili, G., Altsschuler, Y. and Levanony, H. (1993) Assembly and transport of seed storage proteins. Trends Cell Biol. 3, 437–442.

    Article  CAS  PubMed  Google Scholar 

  27. Lending, C.R. and Larkins, B.A. (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1, 1011–1023.

    Article  CAS  PubMed  Google Scholar 

  28. Ludevid, M.D., Torrent, M., Martinez-Izquierdo, J.A., Puigdomenech, P. and Palau, P. (1984) Subcellular localization of glutelin-2 in maize (Zea mays L.) endosperm. Plant Mol. Biol. 3, 227–234.

    Article  CAS  Google Scholar 

  29. Prat, S., Cortadas, J., Puigdomenech, P. and Palau, J. (1985) Nucleic acid and amino acid sequences of the maize endosperm protein glutelin-2. Nucleic Acids Res. 13, 1493–1504.

    Article  CAS  PubMed  Google Scholar 

  30. Geli, M.I., Torrent, M. and Ludevid, D. (1994) Two structural domains mediate two sequential events in ? zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6, 1911–1922.

    Article  CAS  PubMed  Google Scholar 

  31. Mainieri, D., Rossi, M., Archinti, M., Belluci, M., De Marchis, F., Vavassori, S., Pompa, A., Arcioni, S. and Vitale, A. (2004) Zeolin. A new recombinant storage protein constructed using maize ? -zein and bean phaseolin. P lant Physiol. 136, 3447–3456.

    Article  CAS  Google Scholar 

  32. Coleman, C.E., Herman, E.M., Takasaki, K. and Larkins, B.A. (1996) The maize ? zein sequesters a zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8, 2335–2345.

    Article  CAS  PubMed  Google Scholar 

  33. Annamalai, P. and Rao, A.L.N. (2006) Delivery and expression of functional viral RNA genomes in plants by agroinfiltraion. In: Current protocols in Microbiology. Downey (ed.) Vol 1. John Wiley and Sons Inc., Hoboken, N.J.

    Google Scholar 

  34. Draper, J., Scott, R. and Hamil, J. (1988) Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tume-faciens and the Ri plasmid of Agrobacterium rhizogenes. In: Plant Genetic Transformation and Gene Expression. A Laboratory Manual (Draper, J., Scott, R., Armitage, P. and Wal-den, R. Eds.) Oxford: Blackwell Scientific Publications pp. 69–160.

    Google Scholar 

  35. Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Nat. Acad. Sci. USA 94, 2122–2127.

    Article  CAS  PubMed  Google Scholar 

  36. Wydro, M., Kozubek, E. and Lehmann, P. (2006) Optimization of transient Agrobac-terium -mediated gene expression system in leaves of Nicotiana benthamiana. Acta Bio-chim. Pol. 53, 289–298.

    CAS  Google Scholar 

  37. Goytia, E., Fernández-Clavino, L., Mar-tínez-Garcia, B., López-Abella, D. and López-Moya, J.J. (2006) Production of plum pox virus HC Pro functionally active for aphid transmission in a transient expression system. J. Gen. Virol. 87, 3413–3423.

    Article  CAS  PubMed  Google Scholar 

  38. Voinnet, O., Rivas, S., Mestre, P. and Baul-combe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Torrent, M., Llop-Tous, I., Ludevid, M.D. (2009). Protein Body Induction: A New Tool to Produce and Recover Recombinant Proteins in Plants. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics