Skip to main content

Stromagenesis During Tumorigenesis: Characterization of Tumor-associated Fibroblasts and Stroma-derived 3D Matrices

  • Protocol
  • First Online:
Extracellular Matrix Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 522))

Summary

It is increasingly recognized that interactions between cancer cells and their surrounding stroma are critical for promoting the growth and invasiveness of tumors. For example, cancer cells alter the topography and molecular composition of stromal extracellular matrix by increasing paracrine regulation of fi-bro-blas-tic stromal cells during early tumor development. In turn, these physical and biochemical alterations of the stroma, profoundly affect the properties of the cancer cells. However, little is known about the cross-talk between stroma and cancer cells, and it is mainly due to the lack of a suitable in vitro system to mimic the stroma in vivo. We present an in vivo-like 3D stromal system derived from fibroblasts harvested from tissue samples representing various stages of stroma progression during tumorigenesis. The chapter describes how to isolate and characterize fibroblasts from a plethora of tissue samples. It describes how to produce and characterize fibroblast-derived 3D matrices. Finally, it describes how to test matrix permissiveness by analyzing the morphology of cancer cells cultured within various 3D matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelev, G. I. (2003) Differentiation antigens: dependence on carcinogenesis mechanisms and tumor progression (a hypothesis). Mol Biol 37, 2–8

    Article  Google Scholar 

  2. Wong, Y. C. and Tam, N. N. (2002) Dedifferentiation of stromal smooth muscle as a factor in prostate carcinogenesis. Differentiation 70, 633–645

    Article  PubMed  Google Scholar 

  3. Wong, Y. C., Cunha, G. R. and Hayashi, N. (1992) Effects of mesenchyme of the embryonic urogenital sinus and neonatal seminal vesicle on the cytodifferentiation of the Dunning tumor: ultrastructural study. Acta Anat (Basel) 143, 139–150

    Article  Google Scholar 

  4. Hayashi, N., Cunha, G. R. and Wong, Y. C. (1990) Influence of male genital tract mesenchymes on differentiation of Dunning prostatic adenocarcinoma. Cancer Res 50, 4747–4754

    PubMed  Google Scholar 

  5. Mueller, M. M. and Fusenig, N. E. (2002) Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation 70, 486–497

    Article  PubMed  Google Scholar 

  6. Pupa, S. M., Menard, S., Forti, S. and Tagliabue, E. (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192, 259–267

    Article  PubMed  Google Scholar 

  7. Skobe, M. and Fusenig, N. E. (1998) Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci U S A 95, 1050–1055

    Article  PubMed  Google Scholar 

  8. Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tlsty, T. D. and Cunha, G. R. (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59, 5002–5011

    PubMed  Google Scholar 

  9. Glick, A. B. and Yuspa, S. H. (2005) Tissue homeostasis and the control of the neoplastic phenotype in epithelial cancers. Semin Cancer Biol 15, 75–83

    Article  PubMed  Google Scholar 

  10. Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522

    Article  PubMed  Google Scholar 

  11. Bhowmick, N. A. and Moses, H. L. (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15, 97–101

    Article  PubMed  Google Scholar 

  12. Mueller, M. M. and Fusenig, N. E. (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4, 839–849

    Article  PubMed  Google Scholar 

  13. Li, G., Satyamoorthy, K., Meier, F., Berking, C., Bogenrieder, T. and Herlyn, M. (2003) Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 22, 3162–31671

    Google Scholar 

  14. Bissell, M. J. and Radisky, D. (2001) Putting tumours in context. Nat Rev Cancer 1, 46–54

    Article  PubMed  Google Scholar 

  15. Kunz-Schughart, L. A. and Knuechel, R. (2002) Tumor-associated fibroblasts (Part I): active stromal participants in tumor development and progression? Histol Histopathol 17, 599–621

    PubMed  Google Scholar 

  16. Kunz-Schughart, L. A. and Knuechel, R. (2002) Tumor-associated fibroblasts (Part II): functional impact on tumor tissue. Histol Histopathol 17, 623–637

    PubMed  Google Scholar 

  17. Silzle, T., Randolph, G. J., Kreutz, M. and Kunz-Schughart, L. A. (2004) The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer 108, 173–180

    Article  PubMed  Google Scholar 

  18. Beacham, D. A. and Cukierman, E. (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15, 329–341

    Article  PubMed  Google Scholar 

  19. Cukierman , E. (2008) Stromagenesis. In: Encyclopedia of Cancer (ed. M. Schwab). Springer, Heidelberg/Germany, 2843–2845

    Google Scholar 

  20. Pinzani, M. (2006) Pancreatic stellate cells: new kids become mature. Gut 55, 12–14

    PubMed  Google Scholar 

  21. Guyot, C., Lepreux, S., Combe, C., Doudnikoff, E., Bioulac-Sage, P., Balabaud, C., (2006) Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 38, 135–151

    PubMed  Google Scholar 

  22. Bauer, G. (1996) Elimination of transformed cells by normal cells: a novel concept for the control of carcinogenesis. Histol Histopathol 11, 237–255

    PubMed  Google Scholar 

  23. Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 101, 4966–4971

    Article  PubMed  Google Scholar 

  24. Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A. and Sonnenschein, C. (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117, 1495–1502

    Article  PubMed  Google Scholar 

  25. Mintz, B. and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72, 3585–3589

    PubMed  Google Scholar 

  26. Elenbaas, B. and Weinberg, R. A. (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264, 169–184

    Article  PubMed  Google Scholar 

  27. Mareel, M. and Leroy, A. (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83, 337–376

    PubMed  Google Scholar 

  28. Park, C. C., Bissell, M. J. and Barcellos-Hoff, M. H. (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6, 324–329

    Article  PubMed  Google Scholar 

  29. Quaranta, V. and Giannelli, G. (2003) Cancer invasion: watch your neighbourhood! Tumori 89, 343–348

    PubMed  Google Scholar 

  30. Sung, S. Y. and Chung, L. W. (2002) Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70, 506–521

    Article  PubMed  Google Scholar 

  31. Bachem, M. G., Schunemann, M., Ramadani, M., Siech, M., Beger, H., Buck, A., > (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128, 907–921

    Article  PubMed  Google Scholar 

  32. Desmouliere, A., Guyot, C. and Gabbiani, G. (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48, 509–517

    Article  PubMed  Google Scholar 

  33. Noel, A., Kebers, F., Maquoi, E. and Foidart, J. M. (1999) Cell-cell and cell-matrix interactions during breast cancer progression. Curr Top Pathol 93, 183–193

    PubMed  Google Scholar 

  34. Tuxhorn, J. A., Ayala, G. E. and Rowley, D. R. (2001) Reactive stroma in prostate cancer progression. J Urol 166, 2472–2483

    Article  PubMed  Google Scholar 

  35. Friedl, P. (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16, 14–23

    Article  PubMed  Google Scholar 

  36. Sahai, E. and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5, 711–719

    Article  PubMed  Google Scholar 

  37. Yamaguchi, H., Wyckoff, J. and Condeelis, J. (2005) Cell migration in tumors. Curr Opin Cell Biol 17, 559–564

    Article  PubMed  Google Scholar 

  38. Carragher, N. O., Walker, S. M., Scott Carragher, L. A., Harris, F., Sawyer, T. K., Brunton, V. G., (2006) Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25, 5726–5740

    Article  PubMed  Google Scholar 

  39. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. and Sahai, E. (2006) ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 16, 1515–1523

    Article  PubMed  Google Scholar 

  40. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160, 267–277

    Article  PubMed  Google Scholar 

  41. Cukierman, E., Pankov, R., Stevens, D. R. and Yamada, K. M. (2001) Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712

    Article  PubMed  Google Scholar 

  42. Amatangelo, M. D., Bassi, D. E., Klein-Szanto, A. J. and Cukierman, E. (2005) Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol 167, 475–488

    Article  PubMed  Google Scholar 

  43. Cukierman, E., Pankov, R. and Yamada, K. M. (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14, 633–639

    Article  PubMed  Google Scholar 

  44. Griffith, L. G. and Swartz, M. A. (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7, 211–224

    Article  PubMed  Google Scholar 

  45. Kim, J. B., Stein, R. and O'Hare, M. J. (2004) Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res Treat 85, 281–291

    Article  PubMed  Google Scholar 

  46. Larsen, M., Artym, V. V., Green, J. A. and Yamada, K. M. (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18, 463–471

    Article  PubMed  Google Scholar 

  47. Smalley, K. S., Lioni, M. and Herlyn, M. (2006) Life isn't flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42, 242–247

    Article  PubMed  Google Scholar 

  48. Yamada, K. M. and Cukierman, E. (2007) Modeling tissue morphogenesis and cancer in 3D. Cell, 130, 601–610.

    Article  PubMed  Google Scholar 

  49. Tuxhorn, J. A., Ayala, G. E. and Rowley, D. R. (2001) Reactive stroma in prostate cancer progression. J Urol 166, 2472–2483

    Article  PubMed  Google Scholar 

  50. Santini, D., Ceccarelli, C., Leone, O., Pasquinelli, G., Piana, S., Marabini, A., (1995) Smooth muscle differentiation in normal human ovaries, ovarian stromal hyperplasia and ovarian granulosa-stromal cells tumors. Mod Pathol 8, 25–30

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Valianou for critical comments and K. Buchheit for assertive proof reading. This work was supported by the American Association of Cancer Research (AACR) Pennsylvania Department of Health (the Department specifically disclaims responsibility for any analyses, interpretations, or conclusions), the National Institutes of Health/National Cancer Institute (grants CA006927, and RO1-CA113451), the Ovarian Cancer Research Foundation (OCRF), the W.W. Smith Charitable Trust and an appropriation from the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Cukierman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Castelló-Cros, R., Cukierman, E. (2009). Stromagenesis During Tumorigenesis: Characterization of Tumor-associated Fibroblasts and Stroma-derived 3D Matrices. In: Even-Ram, S., Artym, V. (eds) Extracellular Matrix Protocols. Methods in Molecular Biology, vol 522. Humana Press. https://doi.org/10.1007/978-1-59745-413-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-413-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-984-0

  • Online ISBN: 978-1-59745-413-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics