Skip to main content

MRD Detection in Acute Lymphoblastic Leukemia Patients Using Ig/TCR Gene Rearrangements as Targets for Real-Time Quantitative PCR

  • Protocol
  • First Online:
Leukemia

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 538))

Summary

Minimal residual disease (MRD) diagnostics has proven to be clinically relevant for evaluation of treatment effectiveness in patients with acute lymphoblastic leukemia (ALL). In most ALL treatment protocols, MRD diagnostics is performed by real-time quantitative PCR (RQ-PCR) analysis of the junctional regions of rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes.

MRD diagnostics via Ig/TCR genes is broadly applicable (>95% of ALL patients) and can reach a good sensitivity (≤10 −4). However, the technique is complex and requires extensive knowledge and experience, because the junctional regions of each leukemia have to be identified before the patient-specific RQ-PCR assays can be designed for MRD monitoring. This chapter provides all relevant background information and technical aspects for the complete laboratory process from detection of the clonal Ig/TCR gene rearrangements in ALL cells at diagnosis to the actual MRD measurements in clinical follow-up samples. This information aims at facilitating the PCR-based MRD diagnostics in ALL patients. However, it should be noted that MRD diagnostics for clinical treatment protocols has to be accompanied by regular international quality control rounds to ensure the reproducibility and reliability of the MRD results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Dongen, J. J. M., Seriu, T., Panzer-Grumayer, E. R., Biondi, A., Pongers-Willemse, M. J., Corral, L., Stolz, F., Schrappe, M., Masera, G., Kamps, W. A., Gadner, H., van Wering, E. R., Ludwig, W. D., Basso, G., de Bruijn, M. A., Cazzaniga, G., Hettinger, K., van der Does-van den Berg, A., Hop, W. C., Riehm, H., and Bartram, C. R. (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  2. Cave, H., van der Werff ten Bosch, J., Suciu, S., Guidal, C., Waterkeyn, C., Otten, J., Bakkus, M., Thielemans, K., Grandchamp, B., and Vilmer, E. (1998) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer–Childhood Leukemia Cooperative Group. New England Journal of Medicine 339, 591–598.

    Article  PubMed  CAS  Google Scholar 

  3. Coustan-Smith, E., Sancho, J., Hancock, M. L., Boyett, J. M., Behm, F. G., Raimondi, S. C., Sandlund, J. T., Rivera, G. K., Rubnitz, J. E., Ribeiro, R. C., Pui, C. H., and Campana, D. (2000) Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 96, 2691–2696.

    PubMed  CAS  Google Scholar 

  4. Panzer-Grumayer, E. R., Schneider, M., Panzer, S., Fasching, K., and Gadner, H. (2000) Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 95, 790–794.

    PubMed  CAS  Google Scholar 

  5. Goulden, N., Bader, P., Van Der Velden, V., Moppett, J., Schilham, M., Masden, H. O., Krejci, O., Kreyenberg, H., Lankester, A., Revesz, T., Klingebiel, T., and Van Dongen, J. (2003) Minimal residual disease prior to stem cell transplant for childhood acute lymphoblastic leukaemia. British Journal of Haematology 122, 24–29.

    Article  PubMed  Google Scholar 

  6. Schrappe, M. (2002) Risk-adapted therapy: lessons from childhood acute lymphoblastic leukemia. Hematological Journal 3, 127–132.

    Google Scholar 

  7. van der Velden, V. H. J., Hochhaus, A., Cazzaniga, G., Szczepanski, T., Gabert, J., and van Dongen, J. J. M. (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17, 1013–1034.

    Article  PubMed  CAS  Google Scholar 

  8. Szczepanski, T., Flohr, T., van der Velden, V. H. J., Bartram, C. R., and van Dongen, J. J. M. (2002) Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Practice & Research. Clinical Haematology 15, 37–57.

    Article  CAS  Google Scholar 

  9. van der Velden, V. H., Panzer-Grumayer, E. R., Cazzaniga, G., Flohr, T., Sutton, R., Schrauder, A., Basso, G., Schrappe, M., Wijkhuijs, J. M., Konrad, M., Bartram, C. R., Masera, G., Biondi, A., and van Dongen, J. J. (2007) Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 21, 706–713.

    PubMed  CAS  Google Scholar 

  10. Szczepanski, T., van der Velden, V. H., and van Dongen, J. J. (2006) Flow-cytometric immunophenotyping of normal and malignant lymphocytes. Clinical Chemistry and Laboratory Method 44, 775–796.

    Article  CAS  Google Scholar 

  11. Szczepanski, T., van der Velden, V. H., and van Dongen, J. J. (2003) Classification systems for acute and chronic leukaemias. Best Practice & Research. Clinical Haematology 16, 561–582.

    Article  Google Scholar 

  12. Langerak, A. W., Szczepanski, T., van der Burg, M., Wolvers-Tettero, I. L., and van Dongen, J. J. (1997) Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 11, 2192–2199.

    Article  PubMed  CAS  Google Scholar 

  13. Szczepanski, T., van der Velden, V. H. J., Hoogeveen, P. G., De Bie, M., Jacobs, D. C. H., Van Wering, E. R., and van Dongen, J. J. M. (2004) V{delta}2-J{alpha} gene rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 103, 3798–3804.

    Article  PubMed  CAS  Google Scholar 

  14. Szczepanski, T., Langerak, A. W., Wolvers-Tettero, I. L., Ossenkoppele, G. J., Verhoef, G., Stul, M., Petersen, E. J., de Bruijn, M. A., van’t Veer, M. B., and van Dongen, J. J. M. (1998) Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia 12, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  15. Szczepanski, T., Beishuizen, A., Pongers-Willemse, M. J., Hahlen, K., Van Wering, E. R., Wijkhuijs, A. J., Tibbe, G. J., De Bruijn, M. A., and Van Dongen, J. J. M. (1999) Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia 13, 196–205.

    Article  PubMed  CAS  Google Scholar 

  16. Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., Harts, W. A., Wijkhuijs, A. J., van Wering, E. R., and van Dongen, J. J. M. (1999) Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 93, 4079–4085.

    PubMed  CAS  Google Scholar 

  17. Szczepanski, T., Willemse, M. J., van Wering, E. R., van Weerden, J. F., Kamps, W. A., and van Dongen, J. J. M. (2001) Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 15, 1415–1423.

    Article  PubMed  CAS  Google Scholar 

  18. Beishuizen, A., Hahlen, K., Hagemeijer, A., Verhoeven, M. A., Hooijkaas, H., Adriaansen, H. J., Wolvers-Tettero, I. L., van Wering, E. R., and van Dongen, J. J. (1991) Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia 5, 657–667.

    PubMed  CAS  Google Scholar 

  19. Beishuizen, A., de Bruijn, M. A., Pongers-Willemse, M. J., Verhoeven, M. A., van Wering, E. R., Hahlen, K., Breit, T. M., de Bruin-Versteeg, S., Hooijkaas, H., and van Dongen, J. J. (1997) Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: a new molecular target for detection of minimal residual disease. Leukemia 11, 2200–2207.

    Article  PubMed  CAS  Google Scholar 

  20. Bruggemann, M., van der Velden, V. H. J., Raff, T., Droese, J., Ritgen, M., Pott, C., Wijkhuijs, A., Goekbuget, N., Hoelzer, D., van Wering, E. R., van Dongen, J. J. M., and Kneba, M. (2004) Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease (MRD) in childhood and adult T-cell acute lymphoblastic leukemia (T-ALL). Leukemia 18, 709–719.

    Article  PubMed  CAS  Google Scholar 

  21. Brumpt, C., Delabesse, E., Beldjord, K., Davi, F., Cayuela, J. M., Millien, C., Villarese, P., Quartier, P., Buzyn, A., Valensi, F., and Macintyre, E. (2000) The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 96, 2254–2261.

    PubMed  CAS  Google Scholar 

  22. Huebner, S., Cazzaniga, G., Flohr, T., van der Velden, V. H. J., Konrad, M., Basso, G., Schrappe, M., van Dongen, J. J. M., Bartram, C., Biondi, A., and Panzer-Gruemayer, E. (2004) High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1 positive leukemias. Leukemia 18, 84–91.

    Article  CAS  Google Scholar 

  23. Jansen, M. W., Corral, L., van der Velden, V. H., Panzer-Grumayer, R., Schrappe, M., Schrauder, A., Marschalek, R., Meyer, C., den Boer, M. L., Hop, W. J., Valsecchi, M. G., Basso, G., Biondi, A., Pieters, R., and van Dongen, J. J. (2007) Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 21, 633–641.

    PubMed  CAS  Google Scholar 

  24. Mann, G., Cazzaniga, G., van der Velden, V. H., Flohr, T., Csinady, E., Paganin, M., Schrauder, A., Dohnal, A. M., Schrappe, M., Biondi, A., Gadner, H., van Dongen, J. J., and Panzer-Grumayer, E. R. (2007) Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: The ‘big sister’ of the infant disease? Leukemia 21, 642–646.

    PubMed  CAS  Google Scholar 

  25. van der Velden, V. H., de Bie, M., van Wering, E. R., and van Dongen, J. J. (2006) Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease. Haematologica 91, 679–682.

    PubMed  CAS  Google Scholar 

  26. van der Velden, V. H. J., Bruggemann, M., Hoogeveen, P. G., de Bie, M., Hart, P. G., Raff, T., Pfeifer, H., Luschen, S., Szczepanski, T., van Wering, E. R., Kneba, M., and van Dongen, J. J. M. (2004) TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 18, 1971–1980.

    Article  PubMed  CAS  Google Scholar 

  27. Van Der Velden, V. H. J., Szczepanski, T., Wijkhuijs, J. M., Hart, P. G., Hoogeveen, P. G., Hop, W. C., Van Wering, E. R., and Van Dongen, J. J. M. (2003) Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 17, 1834–1844.

    Article  PubMed  CAS  Google Scholar 

  28. van der Velden, V. H. J., Wijkhuijs, J. M., Jacobs, D. C., van Wering, E. R., and van Dongen, J. J. M. (2002) T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 16, 1372–1380.

    Article  PubMed  CAS  Google Scholar 

  29. van der Velden, V. H. J., Willemse, M. J., van der Schoot, C. E., Hahlen, K., van Wering, E. R., and van Dongen, J. J. M. (2002) Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 16, 928–936.

    Article  PubMed  CAS  Google Scholar 

  30. Pongers-Willemse, M. J., Seriu, T., Stolz, F., d’Aniello, E., Gameiro, P., Pisa, P., Gonzalez, M., Bartram, C. R., Panzer-Grumayer, E. R., Biondi, A., San Miguel, J. F., and van Dongen, J. J. M. (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 13, 110–118.

    Article  PubMed  CAS  Google Scholar 

  31. Kuppers, R., Zhao, M., Rajewsky, K., and Hansmann, M. L. (1993) Detection of clonal B cell populations in paraffin-embedded tissues by polymerase chain reaction. American Journal of Pathology 143, 230–239.

    PubMed  CAS  Google Scholar 

  32. van Dongen, J. J. M., Langerak, A. W., Bruggemann, M., Evans, P. A. S., Hummel, M., Lavender, F. L., Delabesse, E., Davi, F., Schuuring, E., Garcia Sanz, R., van Krieken, J. H. J. M., Droese, J., Gonzalez, D., Bastard, C., White, H. E., Spaargaren, M., Gonzalez Diaz, M., Parreira, A., Smith, J. L., Morgan, G. J., Kneba, M., and Macintyre, E. A. (2003) Design and standardization of PCR primers and protocols for detection of clonal immunogloulin and T-cell receptor gene recombinations in suspect lymphoproliferations. Leukemia 17, 2257–2317.

    Article  PubMed  CAS  Google Scholar 

  33. Feldhahn, N., Henke, N., Melchior, K., Duy, C., Soh, B. N., Klein, F., von Levetzow, G., Giebel, B., Li, A., Hofmann, W. K., Jumaa, H., and Muschen, M. (2007) Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. The Journal of Experimental Medicine 204, 1157–1166.

    Article  PubMed  CAS  Google Scholar 

  34. de Haas, V., Verhagen, O. J., von dem Borne, A. E., Kroes, W., van den Berg, H., and van der Schoot, C. E. (2001) Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia 15, 134–140.

    Article  PubMed  CAS  Google Scholar 

  35. Konrad, M., Metzler, M., Panzer, S., Ostreicher, I., Peham, M., Repp, R., Haas, O. A., Gadner, H., and Panzer-Grumayer, E. R. (2003) Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 101, 3635–3640.

    Article  PubMed  CAS  Google Scholar 

  36. van Dongen, J. J. and Wolvers-Tettero, I. L. (1991) Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clinical Chimica Acta 198, 1–91.

    Article  CAS  Google Scholar 

  37. Li, A., Zhou, J., Zuckerman, D., Rue, M., Dalton, V., Lyons, C., Silverman, L. B., Sallan, S. E., and Gribben, J. G. (2003) Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection. Blood 102, 4520–4526.

    Article  PubMed  CAS  Google Scholar 

  38. Szczepanski, T., van der Velden, V. H. J., Raff, T., Jacobs, D. C. H., van Wering, E. R., Brüggemann, M., Kneba, M., and van Dongen, J. J. M. (2003) Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of secondary T-ALL. Leukemia 17, 2149–2156.

    Article  PubMed  CAS  Google Scholar 

  39. Szczepanski, T., Willemse, M. J., Brinkhof, B., van Wering, E. R., van der Burg, M., and van Dongen, J. J. M. (2002) Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99, 2315–2323.

    Article  PubMed  CAS  Google Scholar 

  40. Verhagen, O. J., Willemse, M. J., Breunis, W. B., Wijkhuijs, A. J., Jacobs, D. C., Joosten, S. A., van Wering, E. R., van Dongen, J. J. M., and van der Schoot, C. E. (2000) Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 14, 1426–1435.

    Article  PubMed  CAS  Google Scholar 

  41. Bruggemann, M., Droese, J., Bolz, I., Luth, P., Pott, C., von Neuhoff, N., Scheuering, U., and Kneba, M. (2000) Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14, 1419–1425.

    Article  PubMed  CAS  Google Scholar 

  42. Breit, T. M., Beishuizen, A., Ludwig, W. D., Mol, E. J., Adriaansen, H. J., van Wering, E. R., and van Dongen, J. J. (1993) tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia 7, 2004–2011.

    PubMed  CAS  Google Scholar 

  43. Breit, T. M., Mol, E. J., Wolvers-Tettero, I. L., Ludwig, W. D., van Wering, E. R., and van Dongen, J. J. (1993) Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. The Journal of Experimental Medicine 177, 965–977.

    Article  PubMed  CAS  Google Scholar 

  44. Szczepanski, T., van der Velden, V. H. J., and van Dongen, J. J. M. (2002) real-time quantitative (RQ)-PCR for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Haematologica 87 (suppl. 1), 183–191.

    Google Scholar 

  45. Langerak, A. W., Wolvers-Tettero, I. L., van Gastel-Mol, E. J., Oud, M. E., and van Dongen, J. J. (2001) Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 98, 2456–2465.

    Article  PubMed  CAS  Google Scholar 

  46. van der Velden, V. H., Cazzaniga, G., Schrauder, A., Hancock, J., Bader, P., Panzer-Grumayer, E. R., Flohr, T., Sutton, R., Cave, H., Madsen, H. O., Cayuela, J. M., Trka, J., Eckert, C., Foroni, L., Zur Stadt, U., Beldjord, K., Raff, T., van der Schoot, C. E., and van Dongen, J. J. (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21, 604–611.

    PubMed  CAS  Google Scholar 

  47. Verhagen, O. J., Wijkhuijs, A. J., van der Sluijs-Gelling, A. J., Szczepanski, T., van der Linden-Schrever, B. E., Pongers-Willemse, M. J., van Wering, E. R., van Dongen, J. J. M., and van der Schoot, C. E. (1999) Suitable DNA isolation method for the detection of minimal residual disease by PCR techniques. Leukemia 13, 1298–1299.

    Article  PubMed  CAS  Google Scholar 

  48. Pongers-Willemse, M. J., Verhagen, O. J., Tibbe, G. J., Wijkhuijs, A. J., de Haas, V., Roovers, E., van der Schoot, C. E., and van Dongen, J. J. M. (1998) Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12, 2006–2014.

    Article  PubMed  CAS  Google Scholar 

  49. Beishuizen, A., Verhoeven, M. A., Mol, E. J., Breit, T. M., Wolvers-Tettero, I. L., and van Dongen, J. J. (1993) Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 7, 2045–2053.

    PubMed  CAS  Google Scholar 

  50. Beishuizen, A., Verhoeven, M. A., Mol, E. J., and van Dongen, J. J. (1994) Detection of immunoglobulin kappa light-chain gene rearrangement patterns by Southern blot analysis. Leukemia 8, 2228–2236.

    PubMed  CAS  Google Scholar 

  51. Breit, T. M., Wolvers-Tettero, I. L., Beishuizen, A., Verhoeven, M. A., van Wering, E. R., and van Dongen, J. J. (1993) Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 82, 3063–3074.

    PubMed  CAS  Google Scholar 

  52. van Wering, E. R., van der Linden-Schrever, B. E., van der Velden, V. H. J., Szczepanski, T., and van Dongen, J. J. M. (2001) T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia 15, 1301–1303.

    Article  PubMed  CAS  Google Scholar 

  53. van Wering, E. R., van der Linden-Schrever, B. E., Szczepanski, T., Willemse, M. J., Baars, E. A., van Wijngaarde-Schmitz, H. M., Kamps, W. A., and van Dongen, J. J. M. (2000) Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. British Journal of Haematology 110, 139–146.

    Article  PubMed  CAS  Google Scholar 

  54. van Lochem, E. G., Wiegers, Y. M., van den Beemd, R., Hahlen, K., van Dongen, J. J. M., and Hooijkaas, H. (2000) Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 14, 688–695.

    Article  PubMed  CAS  Google Scholar 

  55. Van der Velden, V. H. J., Wijkhuijs, J. M., and Van Dongen, J. J. M. (2008) Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia 22, 641–644.

    Article  PubMed  CAS  Google Scholar 

  56. van der Velden, V. H., Hoogeveen, P. G., Pieters, R., and van Dongen, J. J. (2006) Impact of two independent bone marrow samples on minimal residual disease monitoring in childhood acute lymphoblastic leukaemia. British Journal of Haematolology 133, 382–388.

    Article  Google Scholar 

  57. van der Velden, V. H. J., Jacobs, D. C., Wijkhuijs, A. J., Comans-Bitter, W. M., Willemse, M. J., Hahlen, K., Kamps, W. A., van Wering, E. R., and van Dongen, J. J. M. (2002) Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 16, 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  58. Moppett, J., van der Velden, V. H., Wijkhuijs, A. J., Hancock, J., van Dongen, J. J., and Goulden, N. (2003) Inhibition affecting RQ-PCR-based assessment of minimal residual disease in acute lymphoblastic leukemia: Reversal by addition of bovine serum albumin. Leukemia 17, 268–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge Patricia Hoogeveen and Maaike de Bie for critically reviewing this manuscript and for their excellent technical support. We thank Marieke Comans-Bitter for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent H. J. van der Velden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

van der Velden, V.H.J., van Dongen, J.J.M. (2009). MRD Detection in Acute Lymphoblastic Leukemia Patients Using Ig/TCR Gene Rearrangements as Targets for Real-Time Quantitative PCR. In: Eric So, C.W. (eds) Leukemia. Methods in Molecular Biology™, vol 538. Humana Press. https://doi.org/10.1007/978-1-59745-418-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-418-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-989-5

  • Online ISBN: 978-1-59745-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics