Skip to main content

The Use of FRET in the Analysis of Motor Protein Structure

  • Protocol
Molecular Motors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 392))

Abstract

Fluorescence resonance energy transfer (FRET) is a spectroscopic phenomenon that consists of long-range dipole-dipole interaction between two chromophores. This method can be employed to gain quantitative distance information on macromolecules. FRET is particularly useful to characterize structural states of motor proteins, because the spatial relationship between various mechanical elements of the motor undergoing its mechanical cycle is essential to understand how force and movement are generated. In this chapter, we describe the technique, including the equations, methods of introducing fluorescence probes in specific loci of the protein, and data analysis. Practical guidelines and hints are also provided for protein preparation, labeling, and measuring FRET efficiency. The protocol is presented for interhead distance measurements in the dimeric kinesin-like motor, Ncd. However, it can easily be adapted to many other motor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shih, W.M., Gryczynski, Z., Lakowicz, J.R., and Spudich, J.A. (2000) A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, J. and Root, D.D. (2000) Conformational selection during weak binding at the actin and myosin interface. Biophys. J. 79, 1498–1510.

    Article  CAS  PubMed  Google Scholar 

  3. Palm, T., Sale, K., Brown, L., Li, H., Hambly, B., and Fajer, P.G. (1999) Intradomain distances in the regulatory domain of the myosin head in prepower and postpower stroke states: fluorescence energy transfer. Biochemistry 38, 13026–13034.

    Article  CAS  PubMed  Google Scholar 

  4. Smyczynski, C. and Kasprzak, A.A. (1997) Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1. Biochemistry 36, 13201–13207.

    Article  CAS  PubMed  Google Scholar 

  5. Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O., Cain, S.M., Pechatnikova, E., Wilson-Kubalek, E.M., Whittaker, M., Pate, E., Cooke, R., Taylor, E.W., Milligan, R.A., and Vale, R.D. (1999) A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784.

    Article  CAS  PubMed  Google Scholar 

  6. Geeves, M.A. and Holmes, K.C. (1999) Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728.

    Article  CAS  PubMed  Google Scholar 

  7. Selvin, P.R. (2000) The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734.

    Article  CAS  PubMed  Google Scholar 

  8. Heyduk, T. (2002) Measuring protein conformational changes by FRET/LRET. Curr. Opin. Biotechnol. 13, 292–296.

    Article  CAS  PubMed  Google Scholar 

  9. Heyduk, T. (2001) Luminescence resonance energy transfer analysis of RNA polymerase complexes. Methods 25, 44–53.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao, M., Reifenberger, J.G., Wells, A.L., Baldacchino, C., Chen, L.Q., Ge, P., Sweeney, H.L., and Selvin, P.R. (2003) An actin-dependent conformational change in myosin. Nat. Struct. Biol. 10, 402–408.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenfeld, S.S., Xing, J., Jefferson, G.M., and King, P.H. (2005) Docking and rolling, a model how the mitotic motor Eg5 works. J. Biol. Chem. 280, 35684–35695.

    Article  CAS  PubMed  Google Scholar 

  12. Yasuda, R., Masaike, T., Adachi, K., Noji, H., Itoh, H., and Kinoshita, K., Jr. (2003)The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 100, 9314–9318.

    Article  CAS  PubMed  Google Scholar 

  13. dos Remedios, C.G., Miki, M., and Barden, J.A. (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J. Muscle Res. Cell Motil. 8, 97–117.

    Article  PubMed  Google Scholar 

  14. Botts, J., Thomason, J.F., and Morales, M.F. (1989) On the origin and transmission of force in actomyosin subfragment 1. Proc. Natl. Acad. Sci. USA 86, 2204–2208.

    Article  CAS  PubMed  Google Scholar 

  15. Bevington, P.R. (1969) Data Reduction and Error Analysis for Physical Sciences. McGraw-Hill, New York.

    Google Scholar 

  16. Dale, R.E., Eisinger, J., and Blumberg, W.E. (1979) The orientation freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161–194.

    Article  CAS  PubMed  Google Scholar 

  17. Mandelkow, E.M., Herrmann, M., and Ruhl, U. (1985) Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J. Mol. Biol. 185, 311–327.

    Article  CAS  PubMed  Google Scholar 

  18. Haran, G., Haas, E., Szpikowska, B.K., and Mas, M.T. (1992) Domain motions in phosphoglycerate kinase: determination of interdomain distance distributions by site-specific labeling and time-resolved fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 89, 11764–11768.

    Article  CAS  PubMed  Google Scholar 

  19. Marsh, D.J. and Lowey, S. (1980) Fluorescence energy transfer in myosin subfragment 1. Biochemistry 19, 774–784.

    Article  CAS  PubMed  Google Scholar 

  20. Takashi, R. and Kasprzak, A.A. (1987) Measurement of interprotein distances in the acto-subfragment 1 rigor complex. Biochemistry 26, 7471–7477.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, J.-Q., Jiang, W., and Hackney, D.D. (1998) Interaction of mantadenosine nucleotides and magnesium with kinesin. Biochemistry 37, 5288–5295.

    Article  CAS  PubMed  Google Scholar 

  22. Hiratsuka, T. (2003) Fluorescent and colored trinitrophenylated analogs of ATP and GTP. Eur. J. Biochem. 270, 3479–3485.

    Article  CAS  PubMed  Google Scholar 

  23. Grazi, E., Cintio, O., Magri, E., and Trombetta, G. (2001) A possible solvent effect of adenosine diphosphate influences the binding of 1,N 6-ethenoadenosine diphosphate to myosin from skeletal muscle. Biochim. Biophys. Acta 1525, 130–135.

    CAS  PubMed  Google Scholar 

  24. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T., and Sutoh, K. (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383.

    Article  CAS  PubMed  Google Scholar 

  25. Hajdo, L., Skowronek, K., and Kasprzak, A.A. (2004) Spatial relationship between heads of dimeric Ncd in the presence of nucleotides and microtubules. Arch. Biochem. Biophys. 421, 217–226.

    Article  CAS  PubMed  Google Scholar 

  26. Kasprzak, A.A., Takashi, R., and Morales, M.F. (1988) Orientation of actin monomer in the F-actin filament: radial coordinate of glutamine-41 and effect of myosin subfragment 1 binding on the monomer orientation. Biochemistry 27, 4512–4522.

    Article  CAS  PubMed  Google Scholar 

  27. Lakowicz, J. (1999) Principles of the Fluorescence Spectroscopy. Kluwer Academic/Plenum, New York.

    Google Scholar 

  28. Root, D.D., Shangguan, X., Xu, J., and McAllister, M.A. (1999) Determination of fluorescent probe orientations on biomolecules by conformational searching: algorithm testing and applications to the atomic model of myosin. J. Struct. Biol. 127, 22–34.

    Article  CAS  PubMed  Google Scholar 

  29. Yun, M., Bronner, C.E., Park, C.-G., Cha, S.-S., Park, H.-W., and Endow, S.A. (2003) Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd. EMBO J. 22, 5382–5389.

    Article  CAS  PubMed  Google Scholar 

  30. Endres, N.F., Yoshioka, C., Milligan, R.A., and Vale, R.D. (2006) A leverarm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439, 875–878.

    Article  CAS  PubMed  Google Scholar 

  31. Hyman, A.A., Salser, S., Drechsel, D., Unwin, N.N., and Mitchison, T.J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolysable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167.

    CAS  PubMed  Google Scholar 

  32. Read, S.M. and Northcote, D.H. (1981) Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal. Biochem. 116, 53–64.

    Article  CAS  PubMed  Google Scholar 

  33. Sablin, E., Case, R.B., Dai, S.C., Hart, C.L., Ruby, A., Vale, R.D., and Fletterick, R.J. (1998) Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813–816.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kasprzak, A.A. (2007). The Use of FRET in the Analysis of Motor Protein Structure. In: Sperry, A.O. (eds) Molecular Motors. Methods in Molecular Biology™, vol 392. Humana Press. https://doi.org/10.1007/978-1-59745-490-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-490-2_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-665-8

  • Online ISBN: 978-1-59745-490-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics