Skip to main content

Merging Photolithography and Robotic Protein Printing to Create Cellular Microarrays

  • Protocol
  • First Online:
Biological Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 671))

Abstract

Photolithographic patterning of proteins on surfaces has been used extensively in the past to define cell adhesion domains with micrometer-scale resolution. However, photolithographic patterning is not amenable to depositing several different proteins on the same surface. We propose to merge photolithography with robotic printing of proteins in order to create arrays of protein spots (∼300–500 μm diameters) with encoded micrometer-scale cell adhesive domains. This method for biointerface design can employ standard positive tone resist lithography to create temporary stencils for printing of protein arrays. Alternatively, nonfouling poly(ethylene glycol) hydrogels can be micropatterned on top of protein spots. In both cases, cells become adherent on the underlying protein domains, but on-the-spot distribution of cells is defined by the photolithographic pattern. The ability to define multiple cell–substrate and cell–cell interaction scenarios on the same surface is applicable to high-throughput screening of the microenvironment components required for cellular differentiation, for example, for guiding stem cells toward the desired tissue type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singhvi, R., et al., (1994) Engineering cell-shape and function. Science. 264, 696–698.

    Article  CAS  Google Scholar 

  2. Bhatia, S.N., M.L. Yarmush, and M. Toner, (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34(2), 189–199.

    Article  CAS  Google Scholar 

  3. Takayama, S., et al., (1999) Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U S A. 96(10), 5545–5548.

    Article  CAS  Google Scholar 

  4. Park, T.H. and M.L. Shuler, (2003) Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19(2), 243–253.

    Article  CAS  Google Scholar 

  5. Yap, F.L. and Y. Zhang, (2007) Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens. Bioelectron. 22(6), 775–788.

    Article  CAS  Google Scholar 

  6. Co, C.C., Y.C. Wang, and C.C. Ho, (2005) Biocompatible micropatterning of two different cell types. J. Am. Chem. Soc. 127(6), 1598–1599.

    Article  CAS  Google Scholar 

  7. Revzin, A., et al., (2001) Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir. 17, 5440–5447.

    Article  CAS  Google Scholar 

  8. Revzin, A., R.G. Tompkins, and M. Toner, (2003) Surface engineering with poly (ethylene glycol) photolithography to creat high-density cell arrays on glass. Langmuir. 19, 9855–9862.

    Article  CAS  Google Scholar 

  9. Schena, M., et al., (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science. 270(5235), 467–470.

    Article  CAS  Google Scholar 

  10. Anderson, D.G., S. Levenberg, and R. Langer, (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22(7), 863–866.

    Article  CAS  Google Scholar 

  11. Flaim, C.J., S. Chien, and S.N. Bhatia, (2005) An extracellular matrix microarray for probing cellular differentiation. Nat. Methods. 2(2), 119–125.

    Article  CAS  Google Scholar 

  12. Revzin, A., et al., (2004) Designing a hepatocellular microenvironment with protein microarraying and poly(ethylene glycol) photolithography. Langmuir. 20(8), 2999–3005.

    Article  CAS  Google Scholar 

  13. Lee, J.Y., et al., (2008) Use of photolithography to encode cell adhesive domains into protein microarrays. Langmuir. 24(5), 2232–2239.

    Article  CAS  Google Scholar 

  14. Dunn, J.C.Y., et al., (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3, 174–179.

    CAS  Google Scholar 

  15. Zhu, H., et al., (2008) A miniature cytometry platform for capture and characterization of T-lymphocytes from human blood. Anal. Chim. Acta. 608(2), 186–196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, J.Y., Revzin, A. (2011). Merging Photolithography and Robotic Protein Printing to Create Cellular Microarrays. In: Khademhosseini, A., Suh, KY., Zourob, M. (eds) Biological Microarrays. Methods in Molecular Biology, vol 671. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-551-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-551-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-95-4

  • Online ISBN: 978-1-59745-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics